Nexus Challenges for Promoting Green Technologies

Aiko Endo, Research Institute for Humanity and Nature (RIHN)

UN ESCAP International Conference on Green Technologies for Achieving SDGs November 28 in Manila

Outline of my talk

- 1. Background of Nexus studies
- 2. Nexus challenges by regions
- 3. Understanding the complexity of WEF nexus system

Water-Energy-Food nexus : Water for Energy? or Water for Food?

Hydropower generation

Water for Energy

Water use for hydropower Water for Food

aquaculture in the dam

using Floating Fish Net

 \rightarrow contribute to the deterioration of its water quality

 \rightarrow efficiency of energy production using contaminated water has become worse ✓ Tradeoffs

Water for energy?VS water for food?

✓ Conflicts

Energy developer VS aquaculture

Jatiluhur Dam, Purwakarta, Indonesia

Groundwater-Food-Environment nexus Groundwater for Food? or Groundwater for Environment?

Groundwater for Food

Use groundwater and recycle water treated household wastewater in San Francisco for agricultural productions

Groundwater for Environment

 Serious water scarcity because of drought since 2012

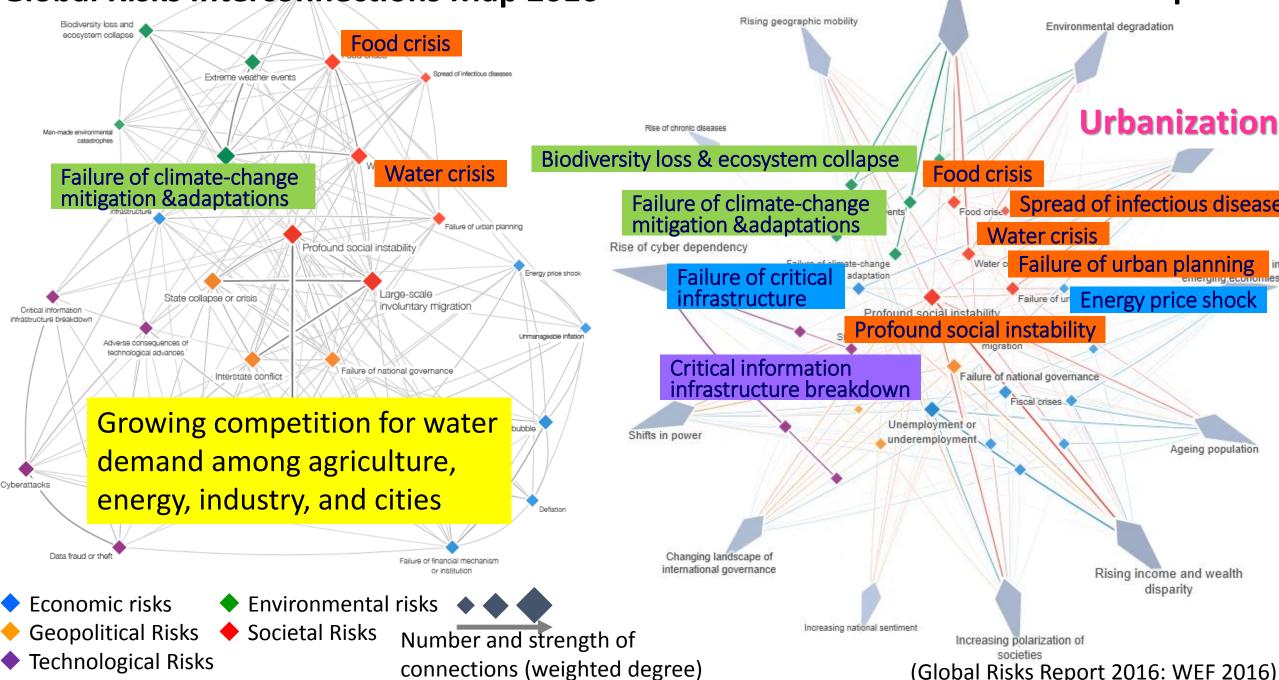
 Decrease in groundwater storage and salination caused by overdraft

Use energy for pumping,
 wastewater treatment, and
 allocate recycled water

✓ Tradeoff

Groundwater resource for food production vs for environment

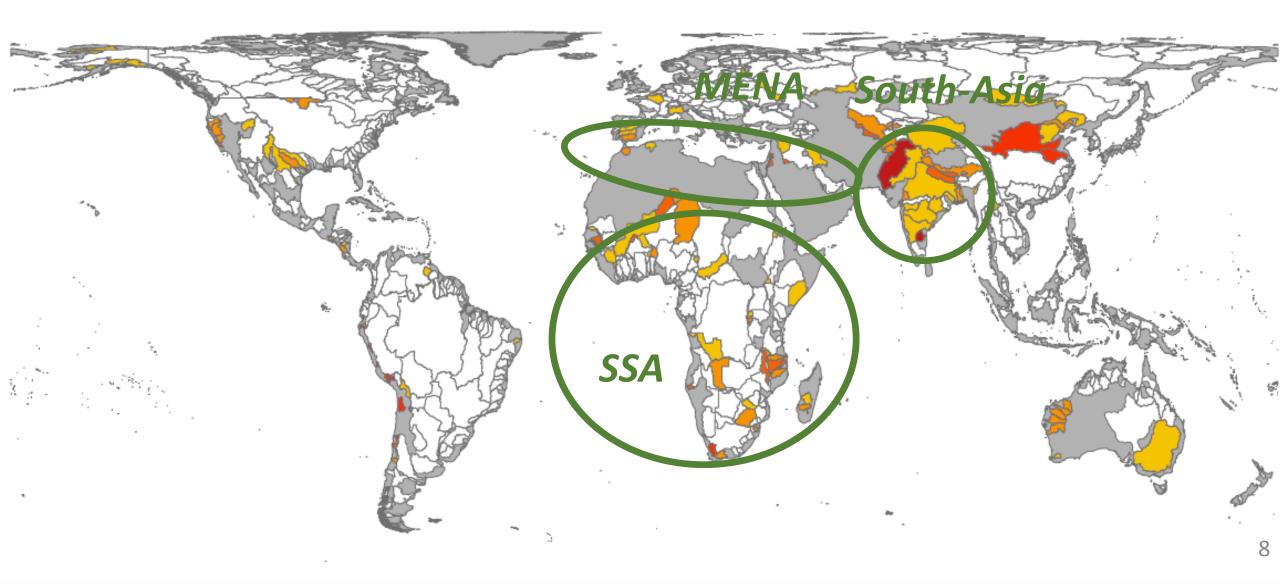
Background of Nexus studies


"a nexus perspective has not been adopted in their framing. The proposed SDG targets fail to take a nexus perspective, i.e. they fail to recognize there are inherent trade-offs but also potential synergies among the proposed SDGs and their targets" (UN-DESA, 2015)

- Identify how each goal is interconnected and interdependent in hybrid methods, among goals
- Identify the tradeoffs and synergies among the various goals
- Develop indicators/tools to evaluate/generate integration from holistic and systemic perspective to alleviate poverty & hunger, which are all related to the 17 goals

Global Risks Interconnections Map 2016

Risk-Trends Interconnections Map 2016


✓ Social and climate change put pressure on water, energy, food resources

Demands for water, energy and food are estimated to increase by 40%, 50%, 30% by 2030(USNIC 2012)

Increase in number of tradeoffs and potential conflicts among these resources that have complex interactions

Nexus approach can enhance water, energy and food security by increasing efficiency, reducing tradeoffs, building synergies and improving governance across sectors (Hoff 2011)

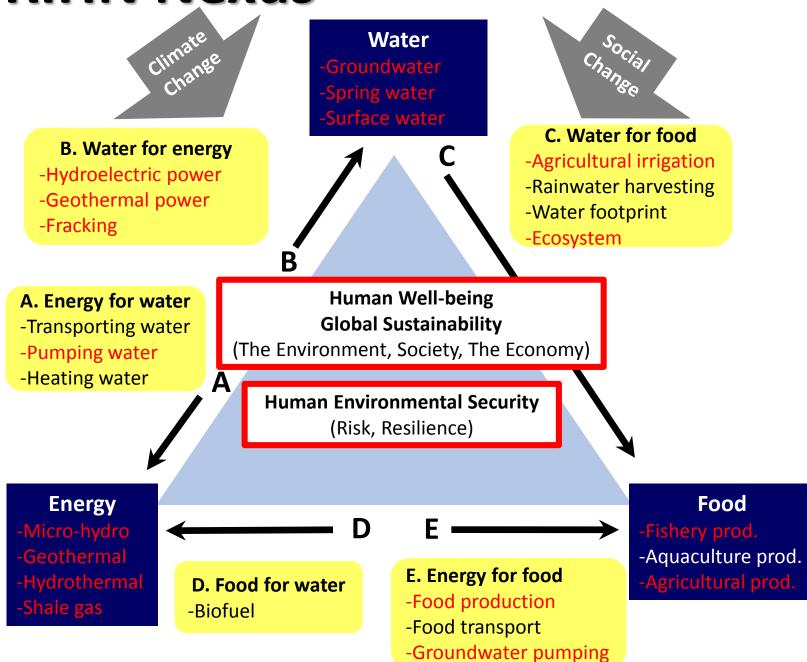
Nexus challenges by regions

Nexus challenges by regions

Source: Sandrine Paillard, Sebastian Heinz, Cliven Njekete, Renee Obregon-Gonzalez

	South-Asia	MENA	Europe	SSA
Irrigation	 Share of agriculture in total water consumption reaching 90% (70%) Groundwater accounts for 3/5 of all irrigation water Soaring use of electricity and diesel for groundwater pumping for irrigation has made agriculture more energy-intensive Low irrigation efficiency 20% (45%) ⇒Excessive irrigation entails declining soil fertility caused by water erosion, water logging, contamination, soil salinization ⇒Land degradation 	 Largest water deficit in the world (water availability under 1000m³/capita/year, 1,700m³/capita/year) Two major water sources in the MENA region, groundwater (65%) and desalinated water (5%) is highly energy intensive Low irrigation efficiency 30% (45%) 		

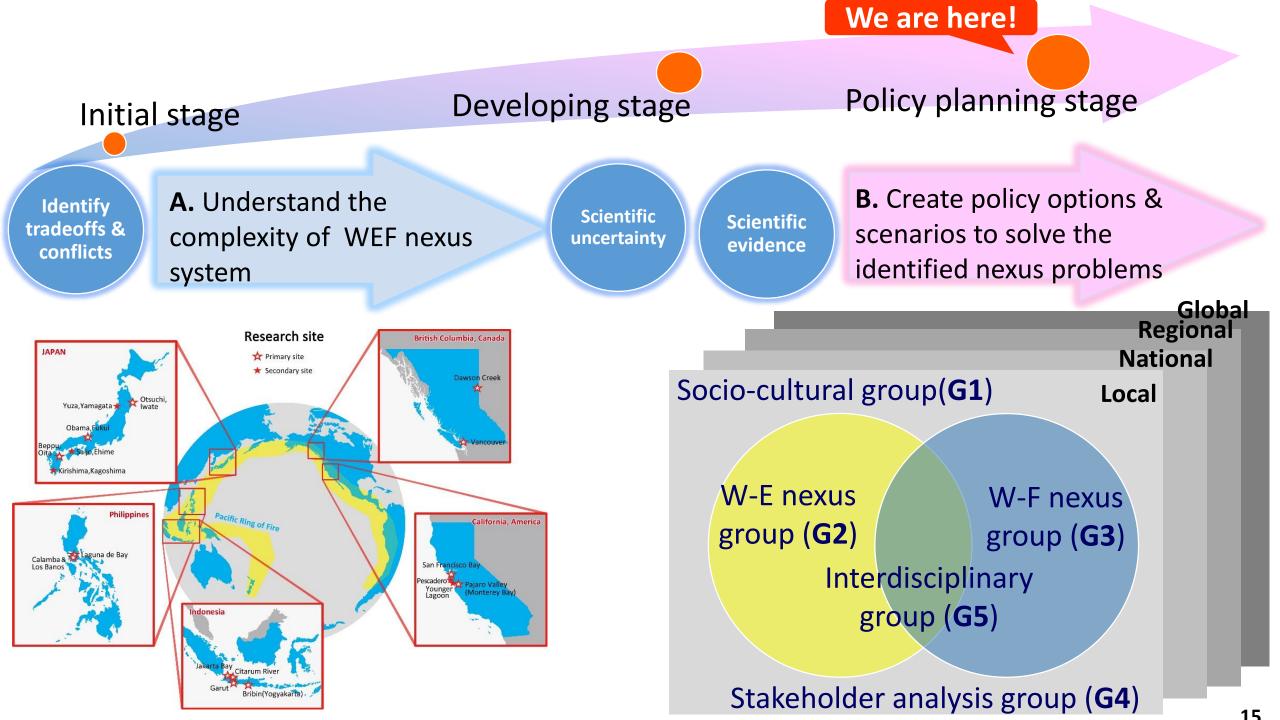
	South-Asia	MENA	Europe	SSA	
Land	Insufficient access to			Insufficient access to electricity and other	
	electricity and other			energy sources	
	energy sources			⇒Reliance on biomass for cooking and lighting	
	⇒Reliance on biomass			⇒Deforestation and affects soil fertility	
	for cooking and			⇒Crop productivity to considerable extent	
	heating			insufficient access of households to food and	
	⇒Affects soil fertility			income	
	⇒Crop productivity to			⇒Reliance on common natural resource pools	
	considerable extent			like wetlands and woodlands	
		⇒Land degradation⇒Soil productivity			
				(Zimbabwe and other Southern African	
				countries)	
				Large-scale dam projects for hydropower and	
				agricultural development	
				⇒Adverse effects of land degradation for	
Source:	Sandrine Paillard, Sebastian Heinz,			potential food & energy production	
	ljekete, Renee Obregon-Gonzalez			(Ethiopia) ¹⁰	


	South-Asia	MENA	Europe	SSA		
Biofuels	 security and land rigil Indirect land-use chanew cropland⇒pote European palm oil im (biodiesel) ⇒High deforestation r Malaysia and Indon 	Potentially affect biodiversity, water and soil quality, food security and land rights Indirect land-use change/ convert forest and grassland to new cropland⇒potentially significant emissions of GHG European palm oil imports from Malaysia and Indonesia (biodiesel) ⇒High deforestation rates and large carbon emissions in Malaysia and Indonesia ⇒Losses of habitat and threats to biodiversity				
Food loss & waste	Diversity on diet chan	ge impacts on <mark>blu</mark>	e and green water footp	rints		
Electricity production	【US & Europe】 ●91% (US) and 78% (E produced by thermo power plants ⇒Directly depend on water resources for ⇒Vulnerable to clima impacts of lower su temperatures	electric (nuclear a the availability ar cooling te change owing t immer river flows	and fossil-fuelled) nd temperature of	90% of South Africa's power is generated from coal power plants which are located in (semi-)arid areas, will lack sufficient water 11		

	South-Asia	MENA	Europe	SSA			
Coastal environment			Dominant coastal sitting of power plants is threatening the marine environment due to the high temperature of discharged water. (The Mediterranean)				
Agriculture			Phosphorus, nitrogen, pesticides impact on water quality (Europe and North America)				
Urbanisation	 population Effects of u Demand fo in diets A change ir 	High relevance for low- and middle-income countries since their urban population is high Effects of urban agriculture on food security and water quality Demand for agricultural products, due to quantity increase and change					

Understanding the complexity of WEF nexus system

RIHN Nexus



Purpose

Understand the complexity of WEF nexus system, and to create policy options to reduce tradeoffs among resources and to solve the conflicts of resource users, under scientific evidence and uncertainty

14

RIHN

Water-Energy Nexus

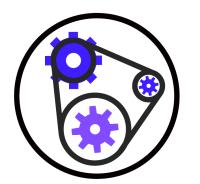
A1 Analyze underground environmental system D1 Study socio-cultural history of GW use A2 Effective potential energy production using waterD2 Review institution for GW management A3 Diversify renewable energy sources A4 Climate × Water × Energy model **Stakeholder analysis** A5 Mapping water security vulnerability

Water-Food Nexus

B1 Interlinkages between GW & fishery production

Water-Energy-Food Nexus

C1 Hydrothermal energy development × ecosystems **C2 CBA** for hydrothermal energy cascade use C3 CBA for land use for food production

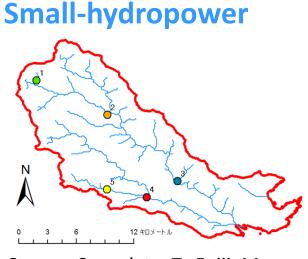

Socio-culture

D3 Evaluate Economic value of local resources

E1 Online survey for energy development E2 governance for hot spring energy development E3 Visualize social network of hot spring SHs E4 Social acceptability on energy development

Interdisciplinary tools

F1 Develop integrated methods for ID & TD F2 Design and visualize nexus system


Integrated approach

G1 Integrated models **G2** Future scenarios

Co-production

H1 Accountability H2 Impact H3 Humility

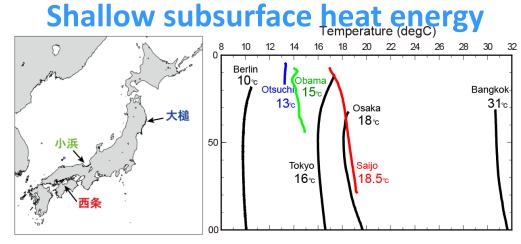
A3 Diversify renewable energy sources

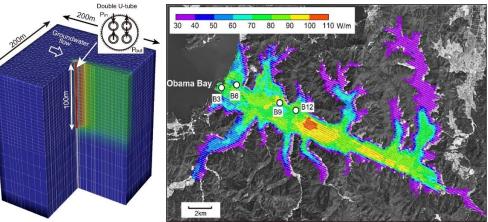
Water-Energy Nexus

Annual potential SHP in 2040s (kWh) Left: Present Right: in 2040s

Site 3 Site 4

Site 5


Site 2


Source: Sawadate, T., Fujii, M.

- Potential electricity of SHP
- 2,171 MWh: Possibly cover 4% of total demand in the town
 Possibly reduce CO2 emission of 2,026 t

Site 1

- Climate change : More precipitation in 2040s than present
 Social change :
- Population: Decrease by 53% in 2040 than present
- Land-use pattern: from forest to artificial land with higher water penetration by developing wind power facilities
- → more streamflow→promising→irrigation rights, electricity prices, river ecosystem and fisheries

- Construction of shallow geothermal potential map
- Utilize the energy from ground heat for application of heat pump

Source: Hamamoto, H., Miyashita, Y.

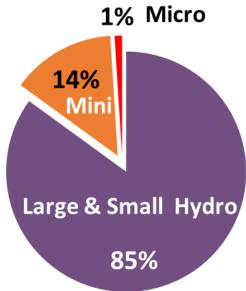
Water-Energy-Food Nexus

C2 CBA for enhancing multistage utilization of hydrothermal energy for food production

Full cascade uses of hot spring water and hot spring drainage water at different temperature & quality profiles

Temperature	Quality (chemical components)	Quality profiles	Cascade use
100°C	Hot spring water	Steam	-Hot spring energy development: W-E -Cooking: W-E-F
80°C	ditto	Heat energy Water	?←Agriculture productions: W-E-F
60°C	ditto	Heat energy	-Heat pump for heating room: W-E -Grow berry (testing): W-E-F
40°C	ditto	Heat energy Water	Spa: W-E
35°C	Hot spring drainage water (chemical components)	Heat energy	?? ←Agriculture productions: W-E-F

Policies and/or regulations for sustainable use of hot spring water and wastewater management should be addressed


Stakeholder analysis

E4 Social acceptability study on energy development

	Geothermal Energy	Micro-hydro power generation
Background	New RE laws, Feed-in-tariff scheme	Off-grid areas for decentralized electrification
Targets/met hods	Semi-structured interview (7 barangays, 268 households)	Semi-structured interview (4 barangays, 400 rsidents)
Results	Supporters: males, Residence in barangays with geothermal facilities, Illegal settlers on public land Opposers: Residence with higher education	Those who don't know micro hydropower as a source of energy : 49% Expect to reduce electricity costs: 78% Increase general welfare of the community : 95%
Co- production	Workshop (88 participants): deepen the understanding regarding geothermal energy	Stakeholder Consultation (20 participants): Institutional, Funding source, Reduce electric costs

G1 Integrated model G2 Future scenarios

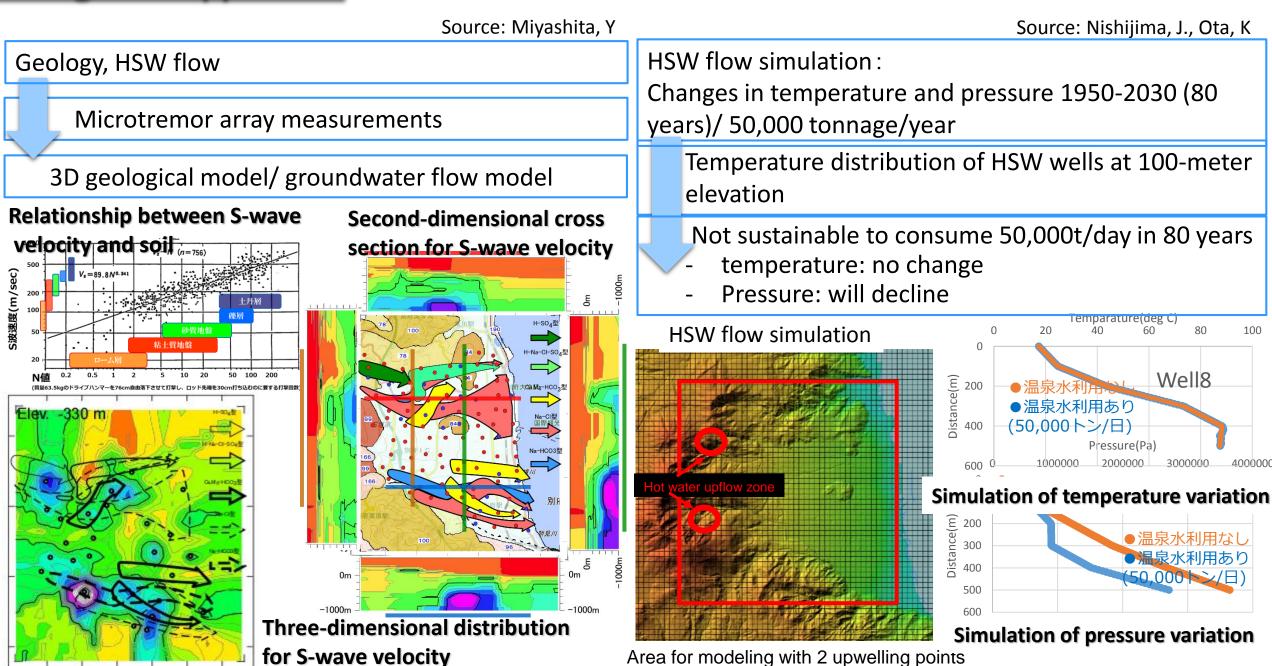
G1 Integrated models

	Obama	Верри	Peace River Region	Pajaro Valley	
Type of Model	Nexus Physical Model	Integrated Water Cycle Analysis & Hydrothermal Model	Snowmelt Hydrological Model	USGS MODFLOW-2005 and Farm Process (FMP2)	
Target area		Beppu Bay	Graham WS Blueberry WS Pacific Ocean Graham Watershed	Pajaro Valley	
Code	Water Balance Model (SHER) + 3D GW Model (MODFLOW, SEAWAT)	GETFLOWS	Cold Regions Hydrological Model (CRHM)	Pajaro Valley Hydrologic Model (PVHM)	
Integrated W-E-F- Climate	Integrated model -surface, river runoff/ groundwater -GW temperature -rainfall and snowfall	Integrated model -rainfall runoff and surface water flow (field survey) -GW flow -water use -thermal energy	Integrated model -shale gas water use projections -climate change projection (temperature + precipitation) -focus on drought/low flows	Integrated model -surface/ groundwater -water supply-and-demand accounting -crops types -drought and climate change	
Other data	 -land use -land elevation -climate -geological structure 	-geological structure -land use -land elevation -submarine topography	 -land use -land elevation -climate -dugouts (water storage detention ponds) 	-land use -climate -hydrogeologic data -land elevation	

G1 Integrated models/G2 Future scenarios

1. Integrated model

- 1) Existing data provided by Geospatial Information Authority of Japan: Ishii
- 2) Monitoring data collected by local : Endo
- 3) Observation data collected by the project (verification data)


Data	Researchers	Methods
River flow observation	Fujii, Yamada	Water gauge
Groundwater pumping model	Osawa	Hot spring data collected by Oita prefecture
3D geological model/Groundwater flow model	Miyashita	Microtremor array measurements
Hot spring water flow simulation	Nishijima, Narutomi, Ota	Gravity Measurement

2. Future scenarios: Quantitative scenarios

- 4 different scenarios based on quantitative models for sustainable use of hot spring resources (quantity, temperature, quality of HSW)
- •How much does groundwater contribute to biological production?

G1 Integrated model in Beppu

Integ	Integrated approach G2 Future scenarios							
	Beppu: Baba	Peace River Region	Pajaro valley	Citarum River-Jakarta B	Laguna de bay			
Scena rios	 4 scenarios based on model Draft of 72 stories SH meeting Delphi method 	Pembina Institute projections for water demand Global climate model output data	En- Drought, climate variability, future climate change - change in crop type, best management practice	3 scenarios 1) BAU, 2) Conservation, 3) Zero FFC -CBA	2 scenario for developing micro- /small hydro power generation -climate model			
Target year	2040	2020-2050 "near future" period; showing statistical variability	2040	2040	2020, 2050			
Policy optio ns	-set the quota/limit of HP -Identify or expand restricted areas -charging HSW use -waste water management -collective management	Improve water management for shale gas development - Restrict water use during dry periods.	Set quota/limit of GW use Optimize water management for wet and dry periods	-Benefits from conservation are highest -institutional arrangement -decentralization -financing -stakeholder involvement	-implementing micro hydro -Policy for groundwater use -guideline for hot spring water resource utilization at national level			
Reco mme ndati ons	O To Beppu city gov.	O To BC Oil & Gas Commission	OTo Pajaro Valley Water Management Agency To California department for water resources	O -Ministry of Public Work -Regional authority (BAPPEDAS) -Ministry of Fishery	-National water resource board -Local government unit of Los Banos and Calamba			
Imple ment ation		Ongoing	PVHM is built, but we are on-going in terms of modifying for future simulations.	Pilot implementation (2017)	24			

G2 Future scenarios: Descriptive scenarios

- CON

	Interviewing and ide	entifying		Interests to climate	Neg disea se	· .	fects of clim nange Bird and animal	ate Free zing	Positive effects of climate	
Stakeholder analysis (FY2013)	interests of stakeho local officials, farme plant nursery		Local official		and pest	d	damage O	injur y —	change O	43きなところ 課題に思うところ
Stakeholder meetings (FY2014-15)	Sharing the results of analysis and discuss (Collecting local knc)	ion 🖌	Farmer 栽培技 術員 流通 種 業 材	0 0 0 0 ×		0 0 0 0	0 0 - - -	- 0 0 -		And
<課題の解決策> ルール作り・規制強 化 ルールで安定度 し、作る・考え し、 た	地域との共生 キニタリングの強 枯渇モニター技術 泉所有者による 日常的管理	Scenario development (FY2016-17)		-			os / dge	-	erts us	sing Delphi method
泉源を減らし無 駄な湧出を減ら オ 制限(より厳格 す オーバーフローの見直し 資源(湯)の 相互利用の 促進 環境負荷の小 さい入浴様式 の開発普及 (例: 蒸湯) 段階で利用(温 水・暖房・地獄蒸 し料理)	温泉資源のエ ネルギー活用 事業として地熱 発電も 含めての将来 展望の検討が 重要 小規模発電する 技術(例:ケータ イの充電) 人材の育成・教育 過泉マイスター等、 地方を世界に発 信する人材を育 成 子供達に学校 で温泉資源の 活用法を教え え、 反面教師の 温泉地を常 に意識する	Scenario workshop (FY2017)	collabo	ration	of st	akeh	olders	, gen	eral p	of action plans by public and experts pert knowledge)
水輪山による保水効 果 	規模の大きい ものは地域限 定で許可 ^{〒WULEY57 WOTE} 続+設備費をペ イするスキム が未熟									2

Future Challenges

 Future challenges in nexus approach focusing on energy development:

Nexus research has so far remained weak in identifying how the nexus is interlinked with policies and its implementation

-explore the science-policy-society interactions through, e.g. policy dialogues

-SDGs must be a big incentive

- 1) Establishing distributed energy systems with integrated small-scale renewable energy sources
- 2) Promoting home-grown industries/employment for local economic growth utilizing local characteristics
- 3) Creating local self-generation supply systems in case of emergency including cutting off energy supply
- 4) Building support systems for individuals/small-scale enterprises
- 5) Establishing objective information systems based on scientific knowledge/data
- 6) Contributing to solving global environmental problems such as biodiversity & ecosystem loss, climate change, finite of energy resources llocos Norte, the Philippines

27