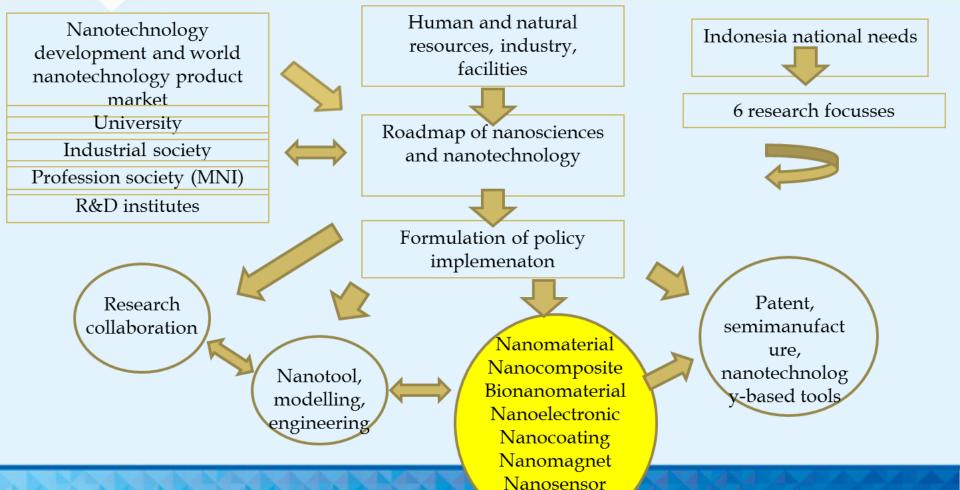
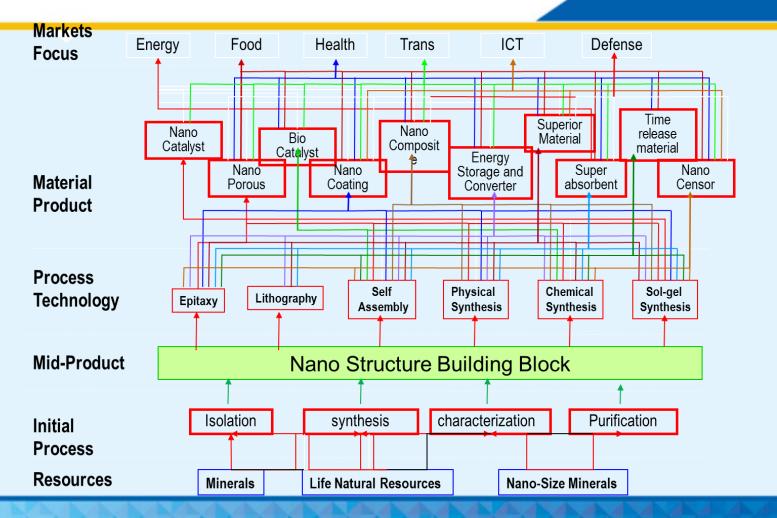
LIPI LEMBAGA ILMU PENGETAHUAN INDONESIA (INDONESIAN INSTITUTE OF SCIENCES)

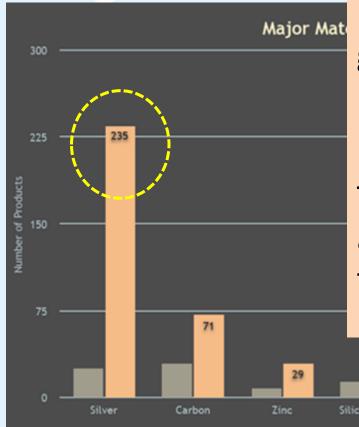
Development of National Nanotechnology Standards for Safe Consumer Products

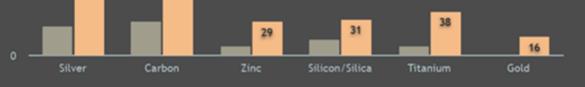

Agus Haryono Research Center for Chemistry Indonesian Institute of Sciences (LIPI)

International Conference on Nanotechnology for Safe and Sustainable Development & Consultative Meeting on Proposed ASEAN Nanosafety Networking Platform, Putrajaya Malaysia, 2-4 May 2017 www.lipi.go.id


Research Based Nanotechnology Indonesia Roadmap

Technology push Roadmap


Nanomaterials


- Ubiquitous in nature (smoke, dust)
- Human exposure and accommodation nothing new
- We cannot assume that nanomaterials are the same as their bulk counterpart...but also cannot assume that they are more toxic.
- Every particle should be tested on a case-by-case basis.

Nanoproduct in the Market

Nanosilver is the most rapidly growing classes of nanoproducts Silver is used in more manufacturer identified consumer products than any other nanomaterial Thousands of nanosilver products are currently on the market, and their number is growing rapidly

DISEASES ASSOCIATED TO NANOPARTICLE EXPOSURE

C. Buzea, I. Pacheco, & K. Robbie, Nanovaterials and vanoparticles: Sources and toxicity, Biointerphases 2 (2007) MR17-MR71

author	size (nm)	shape	surface group	cell line	toxicity results
Shukla ²⁹	3.5 ± 0.7	sphere	lysine, poly(L- lysine)	RAW264.7 mouse macrophage cells	85% cell viability after being exposed to 100 μM gold nanoparticles for 72 h
Connor ³⁰	4, 12, 18	sphere	citrate, cysteine, glucose, biotin, CTAB	K562 human leukemia	none of the spherical nanoparticles were toxic at the micromolar ranges used
Goodman ³³	2	sphere	quaternary ammonium, carboxylic acid	COS-1 mammalian cells, mammalian red blood cells, Escherichia coli	cationic nanoparticles were found to be much more toxic than anionic particles of the same size
Niidome ³⁵	$65\pm5\times11\pm1$	rod	CTAB, PEG	HeLa cells	80% cell death with 0.05 mM CTAB-coated nanorods, only 10% cell death at 0.5 mM PEG-coated nanorods
Huff ³⁶		rod	СТАВ	human tumor KB cells	gold nanoparticles were rapidly taken into the cells and formed permanent aggregates, but the cells remained healthy
Patra ⁴¹	33	sphere	CTAB, citrate	BHK21 baby hamster kidney cells, Hep2G human liver carcinoma cells, A549 human carcinoma lung cells	nontoxic to BHK21 and HepG2 cells, but toxic to A549 cells
Takahashi ³⁷	65 × 11	rod	phosphatidyl- choline	HeLa cells	phosphatidylcholine- modified gold nanorods were much less toxic than CTAB-coated nanorods
Khan ³⁹	18	sphere	citrate	HeLa cells	gold nanoparticles did not cause significant gene- expression patterns or cyotoxicity even though
they were internalized in the cells.				they were internalized in	

TABLE 1. Summary of Selected Cytotoxicity Date for Gold Nanoparticles, 2004–2007

NAMES AND ADDRESS AND A DESCRIPTION OF A

Safety of Nanomaterials

- Are nanomaterials safe for food applications?
- Will the use of nanomaterials be accepted by public?
- What are the potential environmental and society impacts of nanomaterials in foods?

Healthcare Home consumer products		Wounds dressings, textiles, antiseptics, hospital beds and furniture
		Fabric conditioners, baby bottles, food storage containers and salad bowls, kitchen cutting boards, vacuum cleaners, disposable curtains and blinds, tableware, independent Living Aids - bathroom products, furniture (chairs), kitchen gadgets and bath accessories, dishwashers, refrigerators and
		washing machines, toilet tank levers, sink stoppers, toilet seats, pillows and mattresses, food storage containers, other containers, ice cube trays and other plastic kitchenware, hair and other brushes, hair straighteners, combs, rollers, shower caps.
	sumer	Toothpaste, cosmetic deodorants, toothbrushes, tissue paper, epilators, electric shavers
products using nano silver		Pet shampoos, feeders and waters, litter pans, pet bedding and shelter, paper, pens and pencils, ATM buttons, remote control, handrails (buses), computer keyboards, hand
		dryers, wireless voice communicators with badge and the sleeves, yoga mats, coatings for use on laptop computers, calculators, sheet protectors, name badges and holders, shop ticket holders, media storage products, laminating film, report covers and project folders, photo holders, diaries and agendas, office accessories, transparency film, collapsible coolers

Consumer products using nano silver

Clothing and fabrics	Baby clothes, underwear, socks, footwear, various fabrics and vinyls, bath towels, quilts, sleeping bags, bed linens, pillows, quilts, mattress protectors and towels
Food	Packaging, nanobiotic poultry production
Construction	Powder coating (door knobs), wall paints, air conditioning, epoxy resin floor, PVC wall cladding, antimicrobial flooring, metal suspended ceiling systems, window blinds and shading systems, shelving systems, decorative wood laminates, electrical wiring accessories, notile panels (alternative to standard tiling), hygienic laminated surfaces, wallpaper, borders and murals, carpet and carpet underlay, seals (door for cooler doors and freezer cells, tank lids, mixers and (bread) kneading machines, hospital doors, vibrating screens/vibrosieves in the pharmaceutical industry
Disinfectants	Agricultural disinfectants, industrial disinfectants, aquaculture disinfectants, pool disinfectants

nano silver in Food Production chain

Chain phase	Application	Nanotechnology	Function
Processing of food	Food preparation equipment	Incorporated nanosized silver particles	Anti-bacterial coating of food handling devices
Conservation	Refrigerators Storage containers	Incorporated nanosized silver particles	Anti-bacterial coating of storage devices
	Food products	Nanosized silver sprays	Antibacterial action
	Packaging materials	Incorporation of active nanosilver particles	Oxygen scavenging, prevention of growth of bacteria
Food consumption	Supplements	Colloidal metal nanoparticles	Claimed to enhance desirable uptake

Potential human exposure to nano silver

Category	Sub category	Exposure route	Potential Exposure*
Food and beverages	Cleaning	Inhalation/ dermal	High
	Cooking utensils, coatings	Dermal	Low
	Storage	Dermal	Low
	Supplements	Oral	High
Personal care and	Skin care	Dermal	High
cosmetics	Oral hygiene	Oral	High
	Cleaning	Dermal	High
	Hair care	Dermal	Low?
	Baby care	Dermal	High?
	Wound dressings	Dermal	High
	Over the counter products	Dermal?	High?
Textile and shoes	Clothing	Dermal	?
	Other textiles	Dermal	?
	Toys	Dermal/ Oral	?

CASE: Samsung Washer

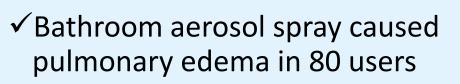
- "Nano Technology...when converted to such a level a material may take on new properties and functions...Silver Nano ions easily penetrate cells of microorganisms ... sterilize over 650 types of bacteria and serve a better world up to you in style." (www.samsung.com)
- The EPA informed Samsung that the silver ion generating washing machine is subject to registration under FIFRA as a pesticide.
- It does not represent an action to regulate nanotechnology...we have not yet received any information that suggests that this product involves the use of nanomaterial."

Case: cosmetic

 "Harnesses the dramatic anti-oxidant power of Fullerene C60, preventing environmental damage to the skin's DNA" (zelens.com)

Case: Air Purifier

NanoBreeze Air Purifier.


A UV tube is wrapped in fiberglass coated by a layer of titanium dioxide crystals at 40 nanometers diameter.

The tube charges the crystals to create "powerful oxidizing agents" that destroy airborne germs and pollutants over the tube's surface.

Case: Magic Nano (Germany, 2006)

- \checkmark No nanomaterials in the product
- ✓ Reportedly no problems from pump spray version
- ✓ Investigated by the Federal Institute for Risk Assessment
- ✓ "There is strong toxicity-based evidence that aerosol surface area is an appropriate metric for low solubility particles."

Some Concerns in the application **b** of nanotechnology

- National Standard for advanced materials.
- Environmental problem.
- Possible toxicity to human and biota
- Nanomaterial has different treatment between nanomaterials and advanced materials.
- Government support all of the process.

Standard

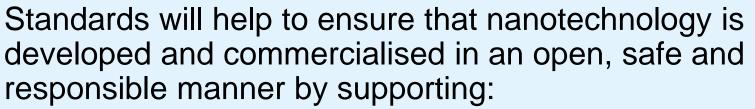
2 TYPES OF STANDARDS:

- 1. Metrological standards: length, mass, time, quantity of matter primary and secondary standards
- 2. Written standards

Written Standards

Written Standards provide agreed ways of:1. Naming, describing and specifying things2. Measuring and testing things

- 3. Managing things e.g. quality and environmental management: ISO 9001 and ISO 14000
- Reporting things as in e.g. proposed ISO 26000 (Social 4. Responsibility)
- To:
 - support commercialisation and market development 1.
 - 2. provide a basis for procurement based on technical requirements and quality/environmental management
 - support appropriate legislation/regulation 3.


VOLUNTARY STANDARDS

Can be *NORMATIVE*, defining what MUST be done in e.g. a specific test method, or *INFORMATIVE*, providing information only.

Standards are VOLUNTARY <u>unless called in a</u> <u>contract or regulation.</u>

Standards provide a means of "validated quantification" $\rightarrow \underline{certification}$

Why Standard for Nanotechnology

- 1. safety testing, legislation and regulation
- 2. worker, public and environmental safety
- 3. commercialisation and procurement
- 4. patenting and IPR
- 5. communication about the benefits, opportunities and potential problems associated with nanotechnologies

Nanotechnology Standards

providing agreed ways of:

- 1. Naming, describing and specifying nanomaterials
- 2. Measuring and testing nanomaterials
- 3. Health and environmental safety testing, risk assessment and risk management of nanomaterials

Nano-standards

"Nanotechnolgy will only become a coherent field of endeavour through the confluence of three important technological streams:

- 1. <u>New and improved control of the size and</u> <u>manipulation of nanoscale building blocks;</u>
- 2. <u>New and improved characterization</u> (spatial resolution, chemical sensitivity, etc) of materials at the nanoscale;
- 3. <u>New and improved understanding</u> of the relationship between nanostructure and properties and how these can be engineered"

National Science and Technology Council Committee on Technology Interagency Working Group on Nanoscience, Engineering and Technology (IWGN)

> Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology R&D in the Next Decade

> > SEPTEMBER 1999

Do not forget safety and consumer acceptance

Needs of Standardization

1. To support commercialisation and market development

To provide a basis for procurement – technical/quality/environmental management

3. To support appropriate legislation/regulation

History of Nano Standardization

 12/03: - China establishes United Working Group for Nanomaterials standardization

- UK proposes CEN/BTWG to develop strategy for European standardization in nanotechnologies.

- 05/04: UK establishes NTI/1 national committee
- 11/04: Japan establishes study group for nanotech. standardization
- 12/04: China publishes 7 national nanotech standards
- 01/05: UK submits proposal for an ISO committee
- 04/05: China implements published nanotech standards
- 2011: Indonesia established TC nanotechnology

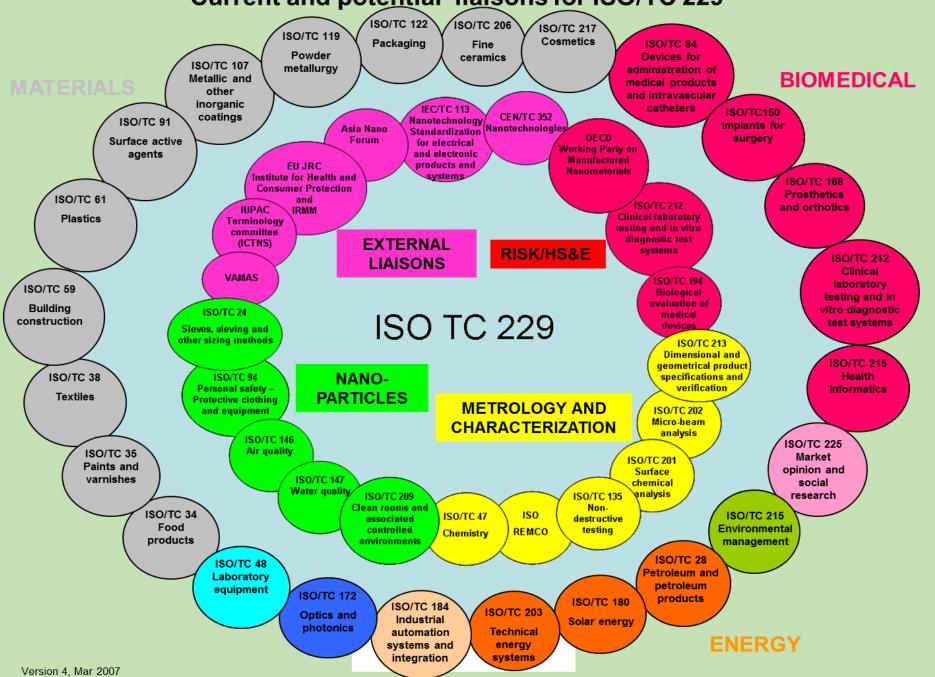
International Standard for Nano

- 06/05: ISO confirms establishment of TC 229 UK secretariat & chair.
 - 11/05: Inaugural meeting of ISO TC 229 in London.
 - CEN establishes CEN/TC 352 Nanotechnologies UK Chair & Secretariat
- 01/06: UK submits first NWIP to TC 229 vocabulary for nanoparticles
- 03/06: IEC receives proposal for new TC for Nanotechnologies
- 04/06: 1st meeting of CEN/TC 352 (agreed to collaborate closely with ISO/TC 229)
- 05/06: IEC agrees to establish TC 113 in the field of nanotechnologies issue of coordination with ISO/TC 229
- 06/06: 2nd meeting of ISO/TC 229, Tokyo
- 12/06: 3rd meeting of ISO/TC 229, Seoul
- 06/07: 4th meeting of ISO/TC 229, Berlin
- 12/07: 5th meeting of ISO/TC 229, Singapore (jointly with IEC/TC 113)

ISO TC 229 has adopted:

"Standardization in the field of nanotechnologies that includes <u>either or both</u> of the following:

- Understanding and control of matter and processes at the nanoscale, typically, but not exclusively, <u>below 100</u> <u>nanometres</u> in one or more dimensions where the onset of size-dependent phenomena usually enables novel applications;
- 2. Utilizing the properties of nanoscale materials that differ from the properties of individual atoms, molecules, and bulk matter, to create improved materials, devices, and systems that exploit these new properties



Task for TC Nanotechnology:

Developed Standard for:

- 1. terminology and nomenclature;
- 2. metrology and instrumentation, including specifications for reference materials;
- 3. test methodologies;
- 4. modelling and simulation; and
- 5. science-based health, safety, and environmental practices.

Current and potential liaisons for ISO/TC 229

Several ISO TC Nano

- 34 Food and food products
- 94 Personal safety protective equipment
- 122 Packaging
- 146 Air quality (New TR published 2007: Workplace Atmospheres -Ultrafine, nanoparticle and nano-structured aerosols - Inhalation exposure characterization and assessment)
- 147 Water quality
- 150 Implants for surgery
- 194 Biological evaluation of medical devices
- 207/SC 5 Environmental management life cycle assessment
- 217- Cosmetics
- TMB Working Group on Risk Management (Risk Terminology defined in ISO/IEC Guides 51 & 73)

- **1. Test methods** to detect and identify nanoparticles, and to characterize nanoscale materials and devices.
- 2. Protocols for bio- and eco-toxicity testing, including protocols to evaluate effects of short term and long term dermal, nasal, oral and pulmonary exposure to, elimination of, and fate determination for nanomaterials and nanoscale devices.
- **3. Protocols for whole life cycle assessment** of nanoscale materials, devices and products.
- 4. Risk assessment tools relevant to the field of nanotechnologies.
- 5. Protocols for containment, trapping and destruction of nanoparticles and nanoscale entities.
- **6. Occupational health protocols** relevant to nanotechnologies, in particular for industries dealing with nanoparticles and nanoscale devices.

Standardization in Indonesia

- National Standardization Agency (BSN) established in 1997
- Standar Nasional Indonesia (SNI)
- Technical Committee 07-03 for Nanotechnology was established on 2011, and work until now.

Nano-Standard in Indonesia

	SNI	
1	SNI ISO 29701:2011	Endotoxyn test in nanomaterial sample (in vitro)- Limulus amebocyte lysate Test (LAL)
2	SNI ISO/TR 11360:2011	Nanotechnology: Classification and Category of Nanomaterial
3	SNI ISO/TS 10867:2011	Nanotechnology: Characterization of single wall carbon nanotube by using photoluminescence Near Infrared spectroscopy
4	SNI ISO/TS 27687:2011	Nanotechnology: Term and definition of nano-objects – nanoparticle, nanofiber and nanorod
5	SNI ISO/TS 80004-1:2011	Nanotechnology – Vocabulary: Part 1: Main term
6	SNI ISO/TS 80004-3:2011	Nanotechnology – Vocabulary: Part 3: Carbon nano- Object

Nano-Standard in Indonesia

	SNI	
7	SNI ISO/TS 12805:2013	Nanotechnology: Material specification – Guideline to determine nano-object specification
8	SNI ISO/TS 80004-4:2013	Nanotechnology: Vocabulary – Part 4: Nano Structure Material
9	SNI ISO/TS 80004-5:2013	Nanotechnology: Vocabulary – Part 5: Relation between nanomaterial and biology
10	SNI ISO/TS 80004-7:2013	Nanotechnology: Vocabulary – Part 7: Diagnostic and therapy for health treatment
11	SNI ISO/TS 11931:2015	Nanotechnology – Nanoscale Calcium Carbonate in powder form: characteristic and measurement
12	SNI ISO/TS 11937:2015	Nanotechnology – Nanoscale Titanium Dioxide in powder form: characteristic and measurement

Summary

- Nanomaterial has been developed and commercialized in many applications of consumer products. Therefore, we need to develop standard for nanomaterial in order to protect human health and environment.
- Nanosafety standard is important to be developed as well as development of nanotechnology applications in many fields.
- Networking among Asia Pacific countries is also important