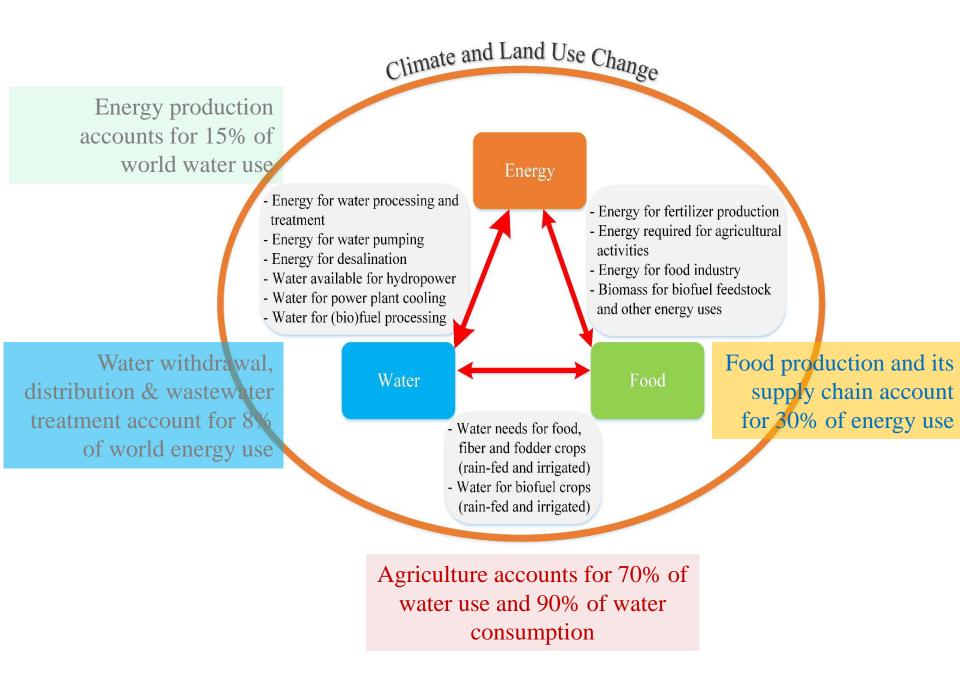


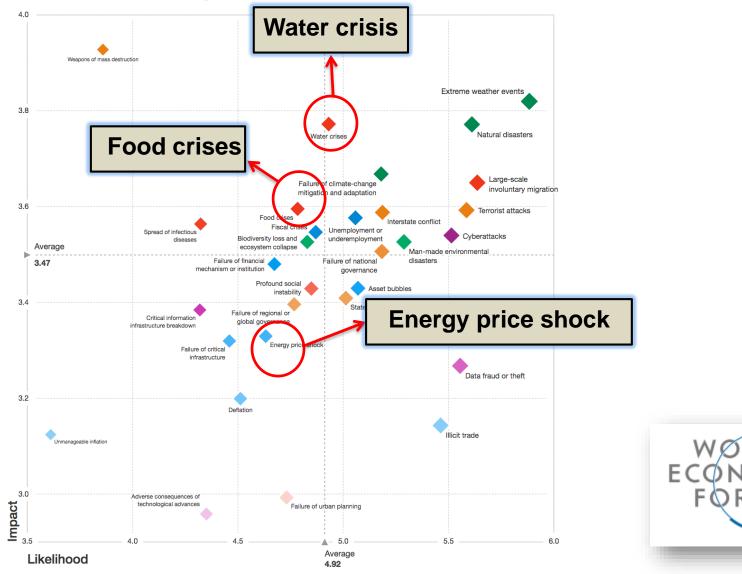
Policies and Programmes related to Water-Energy-Food Nexus in China

Prof. Junguo LIU


Southern University of Science and Technology, China

Content

- 1. Importance of water-energy-food nexus
- 2. Research on China's water-energy-food nexus
- **3.** Policies and programmes of the WEF nexus
- 4. Take-home messages



Liu J.*, et al., 2017. Challenges in Operationalizing the Water-Energy-Food Nexus, Hydrological Sciences Journal.

Global Nexus Risks

The Global Risks Landscape 2017

What is the impact and likelihood of global risks?

Water, Food and Energy

Water security:

- 1.2 billion people live in areas affected by physical water scarcity
- 1.6 billion people live in areas affected by economic water scarcity
- 884 million people lack access to clean water
- Poor quality water in Middle East and North Africa costs from 0.5% to 2.5% of GDP.

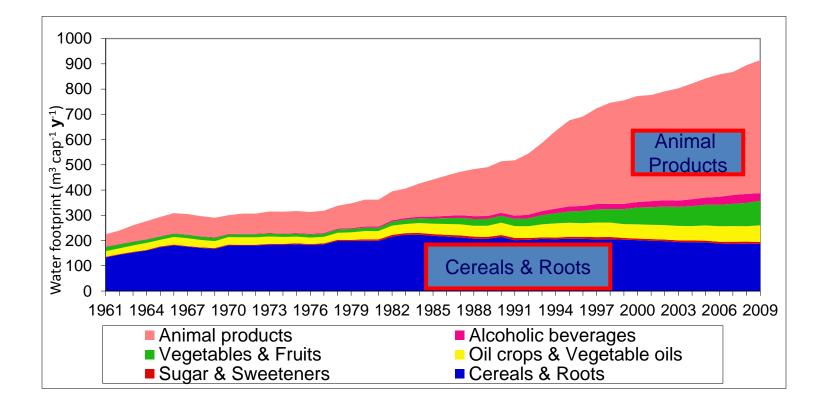
Food security:

- 925 million people go hungry
- Around 1 billion people suffer from the 'hidden hunger'
- World population is increasing by 6 million per month
- An extra billion tonnes of cereals will be needed by 2030 (FAO)

Energy security:


- Currently, 1.4 billion people do not have sufficient electricity.
- It is estimated that in 2030 1.2 billion people will still lack access to electricity

2050 – The Challenge



Research on China's Water-Energy-Food Nexus

- **1. Food-induced water (and land) footprint in China**
- 2. Biofuel-induced water (and land) footprint in China
- **3. Hydropower-induced water footprint in China**
- 4. Coal-induced water footprint in China

Per Capita Water Footprint in China

Changing food-consumption patterns are the main cause of the worsening water scarcity in China (*Liu et al., 2008. Nature*)

Source: Liu and Savenije, 2008. *Hydrology and Earth System Sciences* 12(3): 887-898. Liu J.*, Yang H., Savenije H.H.G., 2008. *Nature* 454 (7203): 397.

Food losses from field to folk

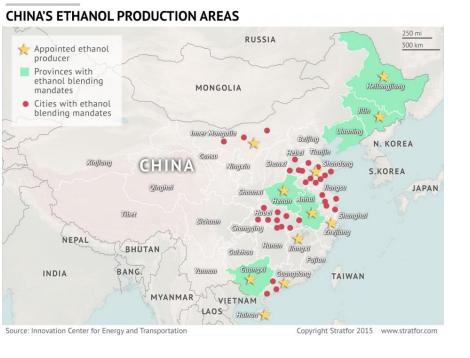
Food losses and waste in China

19 % grains lost and wasted in supply chain from field to fork

135 billion

m³ of water used to produce food not eaten

WF of Canada


26 million

hectares of cropland used in vain

Arable area of Mexico

Liu et al., 2013. Environmental Science & Technology. 47(18): 10137-10144

Water and land footprint of biofuel production

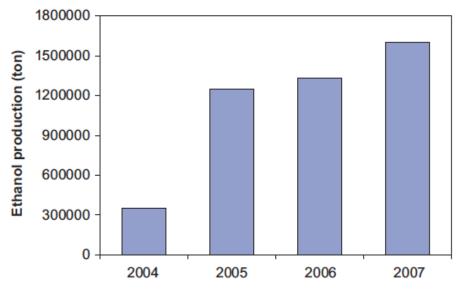


Fig. 1. Bioethanol production in China, 2004–2007. Source: Cheng (2007) and Ad Hoc News (2008).

Biofuel type	Feedstock	Feedstock biofuel conversion ratio (kg/kg) (ton/ton)	Crop yield (kg/ha)	CWR (m ³ /kg)	Water footprint of biofuel (m ³ /L)	Land footprint of biofuel (m ² /L)
Bioethanol	Maize	3	5001	0.84	2.01	4.75
Bioethanol	Cassava	6	16,226	0.55	2.64	2.93
Bioethanol	Sugarcane	15	62,563	0.12	1.47	1.9
Bioethanol	Sugarbeets	14	20,196	0.20	2.24	5.49
Bioethanol	Sweet potato	10	20,968	0.23	1.83	3.78
Biodiesel	Rapeseeds	3.3	1836	2.02	5.82	15.67
Biodiesel	Soybean	5.6	1720	3.20	15.63	28.40

Yang, Zhou and Liu, 2009. Energy Policy. 37: 1876-1885

Water and land footprint of biofuel produced in future

Land and water requirements for the production of the targeted biofuel.

Year	Biofuel target	Feedstock crop	Feedstock use (million tons)	Area for biofuel crops (1000 ha)	% of total crop area	Total water requirement (km ³)
2010	2 million tons of ethanol	Maize	6	1112	0.72	5.1
		Cassava	12	735	0.47	6.7
		Sugarcane	30	477	0.31	3.7
		Sugarbeet	28	979	0.63	5.7
	0.2 million ton Biodiesel	Soybean	1.2	686	0.44	3.8
		Rapeseed	0.66	361	0.23	1.3
2020	10 million tons of ethanol	Maize	30	5562	3.59	25.3
		Cassava	60	3676	2.37	33.3
		Sugarcane	150	2387	1.54	18.6
		Sugarbeet	140	4897	3.16	28.3
	2 million tons of biodiesel	Soybean	12	6857	4.42	38.4
		Rapeseed	6.6	3607	2.33	13.3

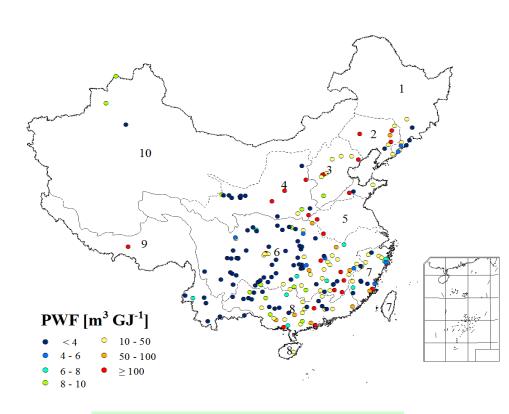
The projection on land and water requirements of biofuel suggests that to meet the biofuel targets for 2020, between 5% and 10% of the total cultivated land and between 32 and 72 km³/year of water would be needed, depending on the feedstocks used. Given the extremely small per capita arable land in China, it is very difficult to spare this amount of land from currently cultivated land for feedstocks. The associated water requirement further lowers the possibility because much of the northern land already endures serious water shortage.

Yang, Zhou and Liu, 2009. Energy Policy. 37: 1876-1885

We were the very few scholars that first question the sustainability of first-generation biofuel development.

日报	~	周报	<mark>⊻</mark> 杂:	<mark>⊻</mark> 志			人民国
中国能源报	2014年12月(8日 星期一				e	people.cn 返回目录
往期回顾	• •	分类检索					这 曰 古水
	生物	勿燃料 乙	乙醇生产	与消费面	面临	重要机进	馬
本报记者	50000000000000000000000000000000000000			补 组特邀顾问	乔映宾	教授访谈	
本报记者编词	50000000000000000000000000000000000000				乔映宾		
编	傅玥雯 皆按 勿燃料乙醇	——国家乙 〔产业,并	醇汽油推广领导 非新鲜事物,	学小组特邀顾问 《中国能》 因提倡消化网	乔映宾 原报》 东化粮	教授访谈 (2014年12月 而起,并随:	08日 第14版) 着推广被赋予
编 生 新的方[傅玥雯 皆按 勿燃料乙醇 句。2002年	——国家乙 (产业,并= 6月,八部	醇汽油推广领导 非新鲜事物, 3委制定下发了	小组特邀顾问 《中国能》	乔映宾 原报》 东化粮 汽油排	教授访谈 (2014年12月 而起,并随: 進广试点方案	08日 第14版) 着推广被赋予 ※ 和《车用

等5个城市开展了为期一年的车用乙醇汽油使用试点工作。目2004年国家决定进一步 扩大乙醇汽油推广试点起,目前我国已是继美国、巴西之后世界第三大乙醇汽油生产 和使用国。


随着燃料乙醇汽油的推广,我国提出了"限制一代(粮食原料)、鼓励1.5代(甜高粱茎秆、木薯非粮原料)、推进二代(纤维素原料)"的生物燃料乙醇产业发展路线,对此,本报记者专访国家乙醇汽油推广领导小组特邀顾问乔映宾教授,介绍我国生物燃料乙醇的推广的现状以及生物燃料乙醇产业面临重要的发展机遇。

大气污染防治重点区域应大力发展、

封闭推广乙醇汽油

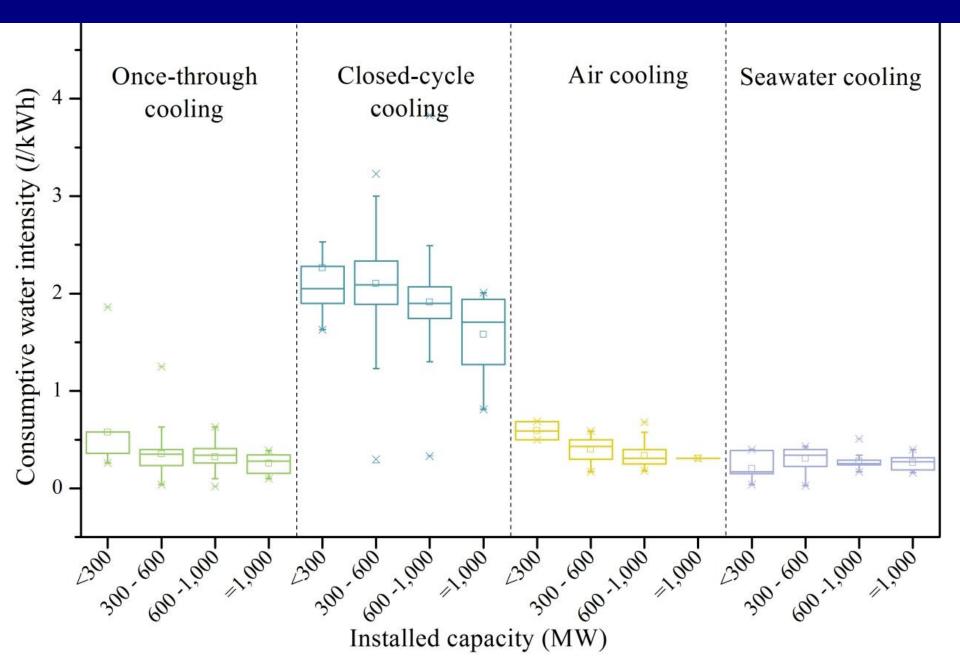
中国能源报:据了解,国家正在研究制定《生物燃料乙醇产业发展政策》中可能 会进一步明确继续坚持"核准生产、定向流通、封闭运行、有序发展"的基本原则,将 鼓励京津冀等大气污染防治重点区域推广使用乙醇汽油。对此你如何看待?

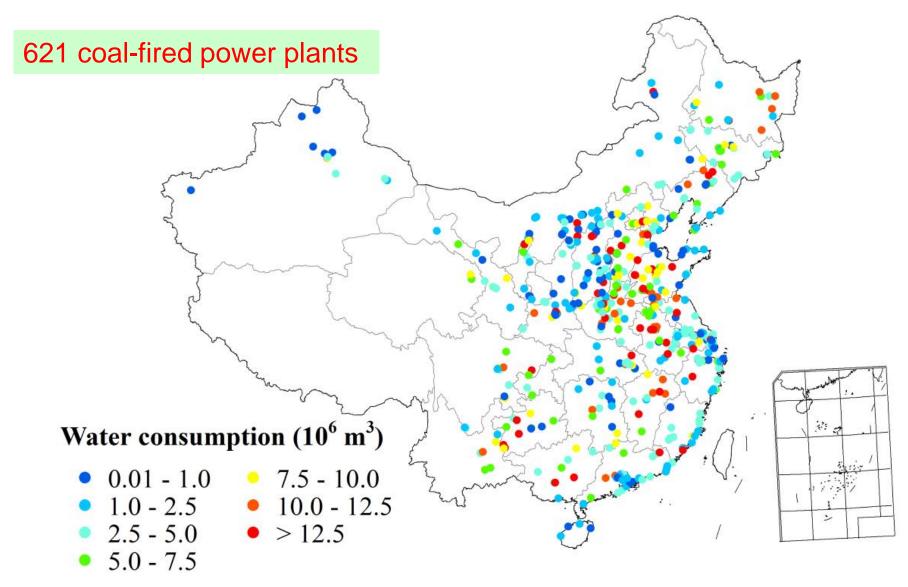
Water footprint of hydropower

²⁰⁹ hydropower plants

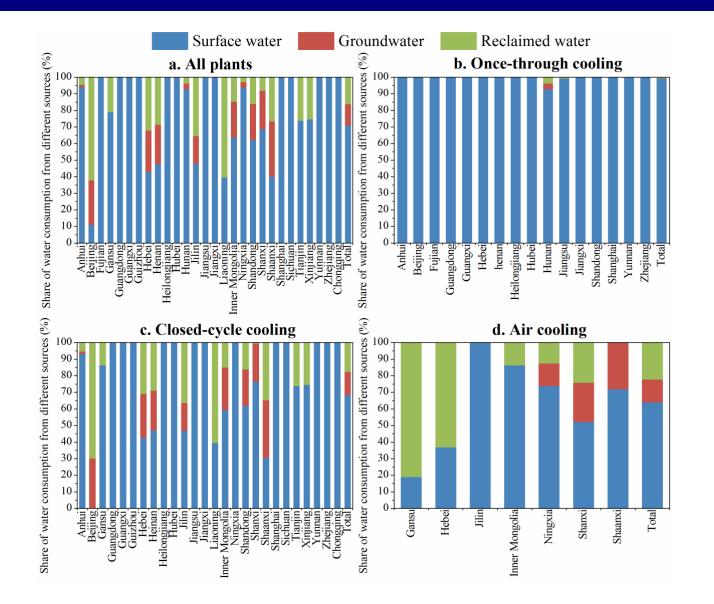
- China's hydroelectric WF totaled 6.6
 Gm³ yr⁻¹ in 2010. This was about
 24% of the reservoir WF
- Average hydroelectric product water footprint (PWF) of 3.6 m³ GJ⁻¹
- Hydropower resources are concentrated in western regions, where PWF is low; but energy demand is dominant in eastern regions with a high PWF.

Liu* et al., 2015. Scientific Reports 5: 11446


Water footprint of energy carrier

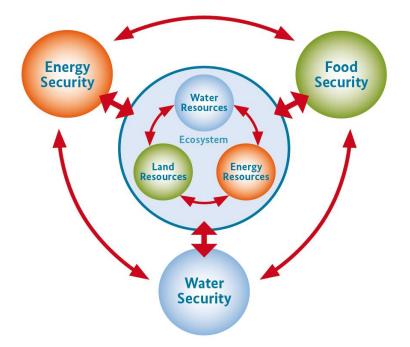

Energy carrier	Process	Blue water footprint (m ³ /10 ¹² J)
Wind energy	Construction, erection and operation of the turbines	0.0 ^a
Coal	Surface mining	2-5ª
	Deep mining	3-20 ^ª
	Benefication	4 ^b
	Slurry pipeline	40-85 ^b
	Other plant operation	90 ^b
	Mining, benefication, slurry pipeline and other plant operations	136-199
Oil	Onshore oil extraction and production	3-8 ^ª
	Oil refining	25-65 ^ª
	Other plant operations	70 ^a
	Onshore oil extraction and production, oil refining and other plant operations	98-143
Natural gas	Processing	6ª
	Pipeline operation	3 ^a
	Plant operation	100 ^a

Liu* et al., 2015. Scientific Reports 5: 11446


The Chinese national average hydroelectric PWF of 3.6 m³ GJ⁻¹ $(3600 \text{ m}^3/10^{12} \text{ J})$ is higher than that of most other technologies **D**PWF of wind energy and underground uranium mining is negligible □ Water footprint of electricity from solar energy, coal-fired and nuclear thermal energy is generally far below $1.0 \text{ m}^3 \text{GJ}^{-1}$ Hydropower is not an efficient solution to energy supply from a

water consumption perspective

Zhang, Liu* et al., 2017. Journal of Cleaner Production 10.1016/j.jclepro.2017.04.040


Zhang, Liu* et al., 2017. Journal of Cleaner Production 10.1016/j.jclepro.2017.04.040

Zhang, Liu* et al., 2017. Journal of Cleaner Production 10.1016/j.jclepro.2017.04.040

Policies and Programs related to WEF Nexus in China

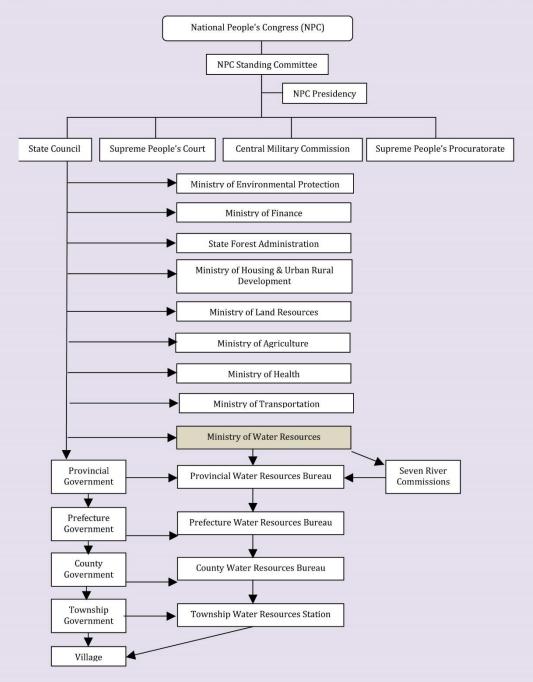
Water Policies

Policy	lssuing Org/Year			tion v cultur	vith energy and e
Decision on Accelerating Water Conservancy Reform and Development (2011 <i>No.1 Document</i>)	State Council/ 2011	- Three "redlines" to control national water use, water use efficiency and water pollution	g	oals fo	quantitative or agricultural & ial sectors
Opinions on Implementing the most Stringent Water Resources Management	State Council/ 2012	Setting quantitative goals of three "redlines" for 2020 and 2030.	g	oals fo	quantitative or agricultural strial sectors
Water Pollution Prevention and Control Action Plan ("Water Ten")		water pollution prevention and control	o p fc	il refir lating pod pi	egulations for neries; electro- ; agriculture roduction &
Water	oolicies ar	e closely relevant to wate	er us	ses	sing
The 13th Five-Ye	in agricul	ture and energy sectors			targets for
on Building a Water- Saving Society	WIWK, MHURD/ 2017	water-saving society in the 13 th five-year plan period (2016–2020)	a		ture, coal sector al-fired city

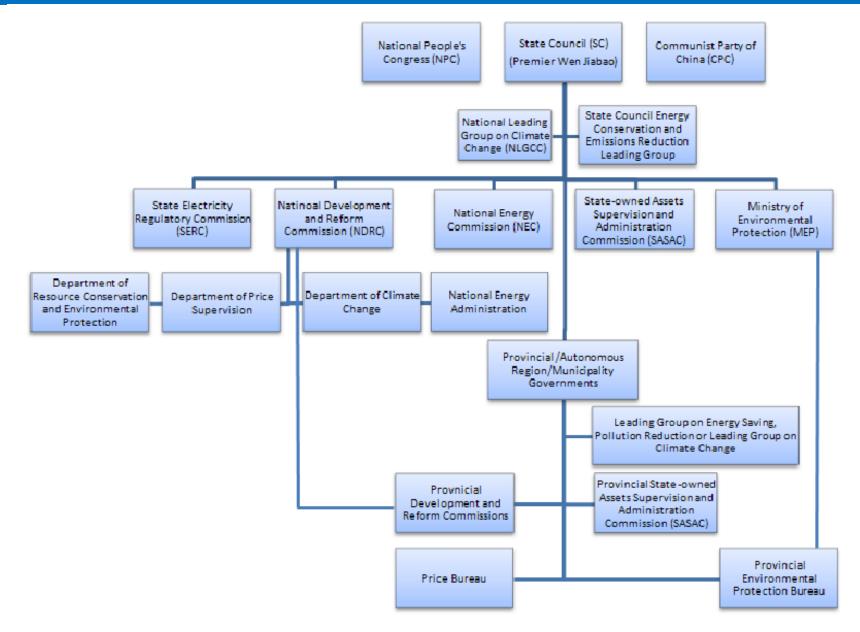
Energy Policies

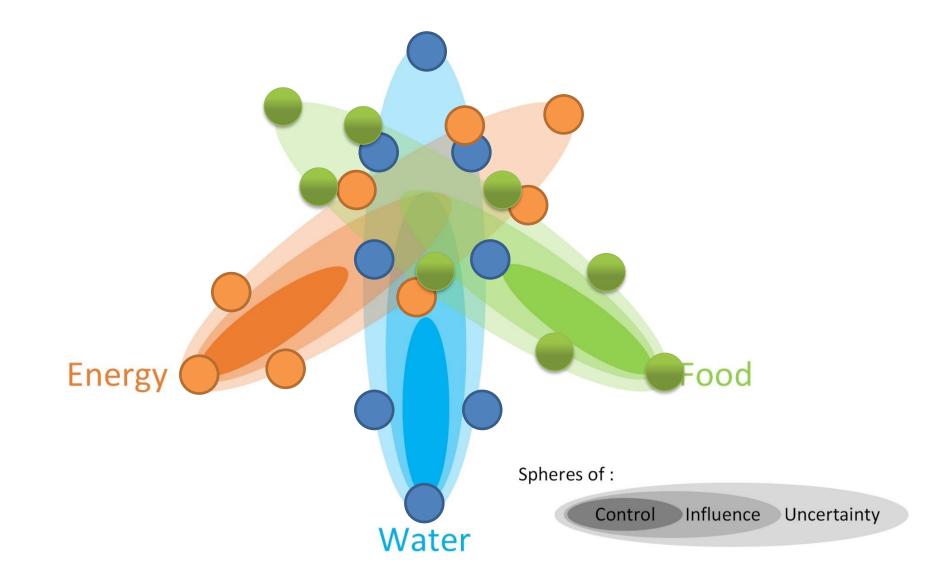
Policy	Issuing Org/Year	Main content	Relation with water and agriculture
The 13th Five-Year Plan for Electricity Power Development (2016- 2030)	NDRC, NEA/ 2016	Setting quantitative development goals for different types of electricity for 2016-2020	Hydropower increased from 2.97 * 10 ⁸ kW in 2015 to 3.4 * 10 ⁸ kW in 2020
The 13th Five-Year Plan on energy development	NEA/ 2017	A set of 2020 targets covering everything related to energy development	Targets for hydro energy installed capacity
Energy production and consumption transition strategy (2016 Energy)	NDRC, NEA/ Dolicies ar	Set quantitative goals for energy e closely relevant	
de	velopmer	nt and water use e	fficiency carrying capacity of water - Hydropower development

Agriculture Policies


Deller			Deletien with weter and energy	
Policy	Issuing Org/Year	Main content	Relation with water and energy	
National Sustainable Agricultural Development Plan (2015- 2030)	MoA, ND RC, MOST, MOF, MLR, et./2015	Guide for sustainable agricultural development in the future	Quantitative targets for irrigation water use, water- saving irrigation	
No.1 Central Document 2016	State Council /2016	Apply new concept of development to agricultural modernization	 Advancing agricultural irrigation system. Tackling the priority environmental problems. 	
National Plan for Agricultural Modernization (2016- 2020).	State Council /2016	By 2020, make notable progress in agricultural modernization	Coordinated development of regional agriculture by considering water resources; Save water and use it efficiently	
The 13th Five-Year for Agricultural and		licies are closely re ation and water use	rigation water use	
Rural Economic Development	,	rural economic development plan	,	

Overview of China's Government Hierarchy as it Relates to Water Resources


Nine Dragons Manage Water


http://chinawaterrisk.org/wpcontent/uploads/2011/04/Diagram A21.jpg

Multiple Sectors Manage Energy

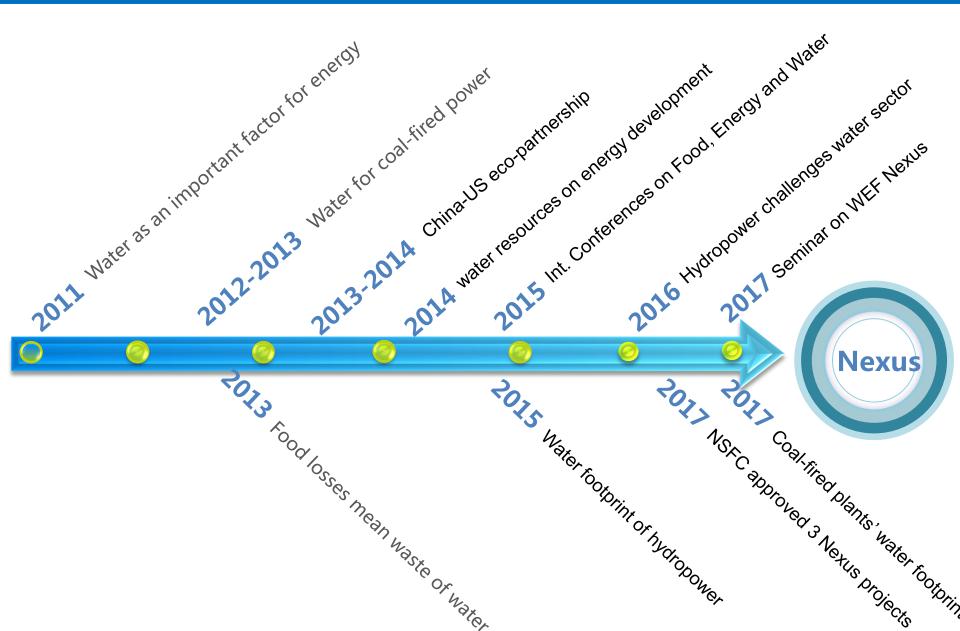
Tsang and Kolk, 2010. Environmental **Policy and Governance**



Water, energy and food are all managed by multiple sectors; which sectors will mange the nexus, and how?

Towards coordination among sectors

- Water Ten Plan is result of coordination & inputs from over 12 ministries and government departments, including Ministry of Environment Protection, National Development & Reform Commission, Ministry of Water Resources, and Ministry of Agriculture.
 The plan sets out 10 general measures which can be broken down to 38 sub-measures with deadlines with responsible government
 - departments identified for each action.



Year	Organization	Programmes	Highlights
2011	National Energy Administration (NEA)	Research on the main factors of energy development	Water resource is regarded as an important factor of both energy production and consumption
2012- 2013	Greenpeace; CAS	Joint research on assessing water consumption of coal- fired electricity	Water demand for coal-fired power generation in west of China would exceed supply capacity by 2015
2013	Beijing Forestry University	Food losses and waste and their implication for water and land	Total water footprint related to food losses in China was equivalent to WF of Canada. Such losses imply land area equivalent to arable land of Mexico were used in vain
2013 - 2014	U.S China Framework for the Ten-Year Cooperation on Energy and Environment	China and U.S. sign an eco-partnership agreement	Cooperation in clean water field; Learn lessons for water pollution control and treatment to promote groundwater conservation and sustainable environment

Year	Organization	Programmes	Highlights
2014	China Institute of Water Resources and Hydropower Research	Investigating the influences of water resources on energy exploitation and use	 Assess the water resources capability of China's major energy basements Water use and supply is a priority for energy industry
2015	Peking University and New York Institute of Technology	Int. Conferences on Sustainable Megacities: Food, Energy, Water, and the Built Environment	Focus on deepening understanding of relationship between water and energy
2015	Beijing Forestry University	Water footprint of hydroelectric power for Three Gorges Reservoirs	A new approach to quantify WF of hydropower by separating it from reservoir WF using an allocation coefficient

Year	Organization	Programmes	Highlights
2016	Southern University of Science and Technology	China's rising hydropower demand challenges water sector	The WF of hydroelectricity was quantified based on data of 209 power plants. Energy policy imposes pressure on freshwater resources.
2017	Shandong University etc.	Seminar on Energy- Food-Water Nexus Security and China's Mitigation	Make efforts in synergy mitigation towards the WEF resource crisis from the nexus perspective
2017	Southern University of Science and Technology	China's fired power plants impose pressure on water resources	Water consumption of coal-fired power plants (CPPs) is 11% of total industrial water consumption. ~75% of water consumption of CPPs was from regions with absolute or chronic water scarcity.
2017	National Natural Science Foundation of China (NSFC)	Approve 3 China-US Network Projects on Water-Energy-Food Nexus	Scientists collaboration on WEF Nexus

Challenges in operationalizing the water-energy-food nexus

by J. Liu, H. Yang, C. Cudennec, A.K. Gain, H. Hoff, R. Lawford, J. Qi, L. de Strasser, P.T. Yillia, C. Zheng

Main Points:

- There remain many challenges in scientific research on the water-energy-food (WEF) nexus, while implementation as a management tool is just beginning;
- The scientific challenges are primarily related to data, information and knowledge gaps in our understanding of the WEF interlinkages.
- Our ability to untangle the WEF nexus is also limited by the lack of systematic tools that could address all the trade-offs involved in the nexus.
- Future research needs to strengthen the pool of information. It is also important to develop integrated software platforms and tools for systematic analysis of the WEF nexus.

Liu* et al., 2017. Hydrological Research Journal In press

Nexus Initiative: Special Issue

ELSEVIER

Home > Books & Journals > Applied Energy > Call for Papers > Call for Papers: Special Issue on "Energy-Water-Food Nexus"

Guide for Authors

Author instructions

 Download the 'Author Information Pack' PDF

 \sim

 \sim

· View 'Guide for Authors' online

Useful links

- Read the '8 Reasons Why I Accepted Your Article' blog
- Download the 'Understanding the Publishing Process' PDF

🖄 Submit Your Paper

Enteryour login details for Applied

Call for Papers: Special Issue on "Energy-Water-Food Nexus"

Q

SEARCH

MENU

With continuous population increase and economic growth, challenges on securing sufficient energy, water, and food supplies to meet the demand are also amplifying. The close linkages of the three sectors give rise to the need for tackling the challenges with a nexus approach. Information shared and interpreted jointly between these three sectors is important for better understanding the complicity of the energy-water-food (E-W-F) nexus and taking integrated approaches for their management. Studies and discussions on the issues relating to concept, research framework, technology innovations, and policy implementation of the nexus are needed to facilitate this understanding. In addition, governance and climate change can guide the development of innovations and policies in the energy water and food sectors, hence, are important aspects in the

Special issue on "Energy-Water-Food Nexus" Editor(s): <u>Liu J.</u>, Hoekstra A.J., Wang H., Wang J., Zheng C., van Vliet M.T.H. Wu M.

China-US Nexus Network

NSFC-NSF Approved 3 Proposals on Food-Energy-Water Nexus Research Network 2017年度国家自然科学基金委员会与美国国家科学基金会"食品、能源、水"系统关联合作网络项目指南

This project aims to build up a research network of Food-Energy-Water (FEW) nexus between China and the United States (U.S.), and integrate an array of systems analyses and modeling approaches from domains such as hydrology, agriculture, energy, climate and environmental science.

- University of Texas at Austin (UTA)
- University of Maryland (UM)
- Harvard University (Harvard)
- University of California, Irvine (UCI)
- Sandia National Laboratories (SNL)

- SUSTech
- Peking University (PKU)
- China Institute of Water Resources and Hydropower Research (IWHR)
- IGSNRR, CAS

Take-home Messages

- □ Water, energy and food are **closely linked and interacted**. A nexus approach is needed for research and management
- China has implemented many policies on water, energy and food, and
 water is always an important issue for each sector
- □ The **triangle water-energy-food nexus** has not been widely studies
- The nexus approach is difficult to implement due to lack of close coordination among sectors
- A dynamic and systematic resource management is expected to avoid "solos" in policies. Stakeholder dialogue across sectors helps implement nexus approach

Thank You

liu_junguo@163.com