

Technology developments and deployment for net zero transition in the energy sector: One perspective

Ajit Sapre

Net zero goal – various carbon neutrality pathways

Pathways for carbon neutrality

Minimize CO₂ generation

- Energy efficiency (all sectors)
- Renewable energy (RE)
- RE storage
- Circular economy
- Green H₂

Maximize C-neutral feed-stocks

- Biomass
- MSW organics
- ETP sludge
- Other organic waste
- On purpose algae production, etc.

Fixation of carbon

- Chemicals and materials
- Carbon capture and utilization
- Carbon capture and storage
- Nature based solutions

Aim of new green technology development is to reduce green premium relative to fossil-based technologies used today

Regions with lower GDP/ capita and overdependence on fossil fuels will need to spend > 10% of GDP/ yr - McKinsey

Multitude of options for collaboration with aim to minimize green premium

'Net Zero' initiatives by the Indian government

Government has set a target of 450 GW power from renewable energy by 2030

Renewable electricity in India

- Capacity target end of 2022 is 175 GW renewable electricity
- PV is 100 GW
- Wind is 60 GW
- Today we are at 115 GW
- Pollution reduces PV output by ~ 25% (IIT study)
- Capacity factor ~ 20%
- Net intermittent electricity delivered <10%

National hydrogen mission

- IOCL and GAIL doing blending hydrogen with CNG
- India is eyeing exports of green ammonia to developed economies

Bio-CNG, Bio-ethanol, Biodiesel

- Bio-CNG plant inaugurated in Indore –
 biggest in Asia
- 20% bio-ethanol blending established for transport fuels by 2026

National color mission

Solar Wind Batteries (SWB)

National solar mission

Promote domestic manufacturing for attaining 280 GW by 2030

 PLI for solar photovoltaics production to promote self reliance

Wind energy mission

Raise wind power generation to 60,000 MW by 2022 end

Batteries

2.4 Billion \$ PLI scheme launched for large scale indigenous Li-ion battery manufacture

Hydro-electric

India is 5th globally in hydroelectric power generation

 Pumped water storage (PHS) has provided surplus power

C trading scheme being developed

New Reliance for new India

- Reliance will provide end-to-end green energy solutions, at an affordable rate
- Established the Reliance New Energy council
- Announced \$10 bn capex commitment over 3 years
- Plans to partner with the best technologies across the energy value chain
- Begin work on 4 new Giga factories at Dhirubhai Ambani Green Energy Giga complex
- Green ecosystem for SMEs Invest Rs 5.95 Lakh Cr in Gujarat over 10-15 years

Stiesdal*

- Batteries: Ambri, Faradion, Lithium werks, REC
- Silicon wafer: Nexwafe (Germany)
- Picked up 40% stake in Sterling and Wilson renewable energy company
- Partner with Denmarks Stiesdal for next gen electrolyzer technology

LithiumWerks

"Over the next 12 months our investments across the Green Energy value chain will gradually start going live, scaling up over the next couple of years. This new growth engine holds great promise to outshine all our existing growth engines in just 5-7 years"

-MUKESH AMBANI CHAIRMAN, RIL

New energy and new materials business may outperform other growth engines in 5-7 years

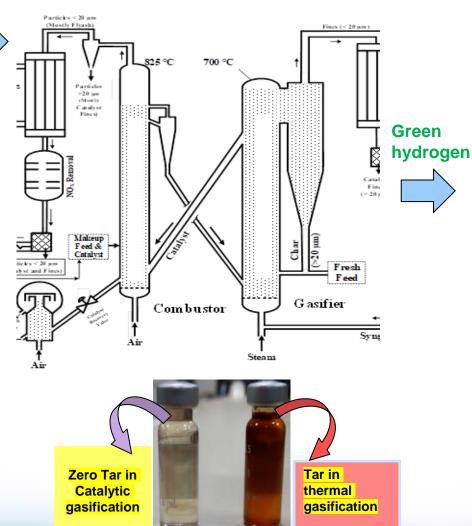
Green India Initiative – Announced 4 Giga Factories :

(1) Solar PV, (2) Batteries, (3) Fuel cells (4) Green H₂ through H₂O electrolysis with RE

Reliance Industries will become Net Zero by 2035

Reliance's biomass catalytic gasification for green hydrogen

Biomass/agri residue


Invented novel migratory solid-solid catalysis

Confident to achieve zero green premium

- Gasification of biomass below 750 °C
- Solid-solid catalysis
- High H₂ % in syngas H₂:CO (> 2.5:1)
 - -15-20% higher heating value versus thermal

gasification

- High reliability and scalability
- 40% lower capex and 40% lower opex than conventional gasification

Challenges

plastics

contamination

conversion,

water

disposal

Reliance's RCAT-HTL provides the best economics for waste biomass processing

		V
	V	

payout on all projects

assumes tipping fee of

10 \$/ton

Economics of RCAT HTL

waste biolilass processing									
		2G Bio-	Biomass		Bio-oil =	Green oil			
	Bio-CNG	Ethanol	incineration to electricity	RCAT-HTL	Electricity / heat	Transportation fuels (SAF)			
Products	BioCNG, 80% residue	EtOH, Gas, 60% residue	Electricity 40% residue	Bio-oil 5% residue	ben	⊕ TL bio-oil efits			
Thermal efficiency	48% (18% to electricity)	34%	18%	70% for MSW, Algae 50% for rice straw and ETP sludge		cally most - – Bio-oil at bbl			
Main product (in kg) / MT of feed	169	190	NA	500		bility; Easy n of bio-oil into			
Capex, M\$	36	100	5	66		ource poor we have to be			
Subsidy (cents/MJ)	0.5	3	1.6	- 0.5	more resource efficient to produce maximum energy				
Challenges	Microbes cannot handle	Lignin disposal, low	Pollutants, Inefficient for	High feed flexibility,	Basis : Feed - 500 TPD dry paddy straw; 4 year				

Bio-oil from RCAT-HTL no green premium

unsegregated

waste

energy dense

drop-in-biofuel

Organic waste to bio-oil, cheapest long duration GWhr stored energy to electricity

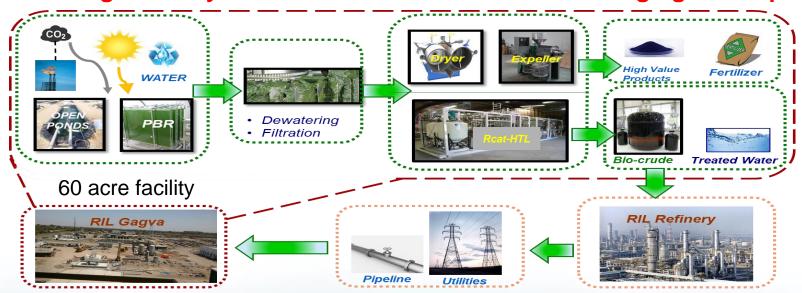
Region	Countries	MSW	Moisture in	Tipping Fees,	Typical LCOS
		Collection %	MSW	USD/ton	(\$/KWh)
High Income countries	US, Canada, Australia, Western EU, Nordics, Japan	96%	21%	\$ 50-85/ ton	-0.06 to -0.18
Upper-middle income countries	China, Russia, South Africa, Brazil	82%	35%	\$ 15-40/ ton	-0.03 to +0.05
Lower-middle income countries	India, Pakistan, Bangladesh, Sri Lanka, Nigeria	51%	35%	\$ 9 – 20/ ton	+0.05 to +0.08
Low-income countries	Sub- Saharan Africa	39%	36%	Open dumping	NA

- World-wide ~ 5,000- 6,000 million ton/yr organic waste generation
- Negative LCOS means at higher tipping fees it is far more profitable
- India is also on the path to eliminate landfills and improving waste management

Reliance proprietary algae to bio-oil (A2O) technology – ultimate in sustainability

Every gallon of algal bio-oil produced consumes 15 kg of CO₂

10,000 BPD oil = 2 million ton CO2


Algae cultivation

Harvesting

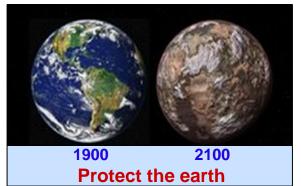
Biomass Conversion

Algal Bio-oil

We are significantly ahead of others in this most challenging development

We can commercialize @ ~\$120/ Bbl crude w/o subsidy, or at \$60 Bbl with subsidies in the US/ EU

RIL best global biomass productivity and carbon conversion efficiency to bio-oil


Summing up...

Discover, Develop, Deploy & Deliver Value

Progress of Mankind from rudimentary tools to RE/ Synbio/ Al/ BMI - Era of Cognification