Technology and Innovation Conclave 1.0 24-26 September 2024 New Delhi, India

DSC-PEC Tandem H₂ Production System

Harvesting Indoor Light for Green H₂ Production

Presented By: Siti Nur Azella Zaine

Centre of Innovative Nanostructures & Nanodevices (COINN) Institute of Smart & Sustainable Living Universiti Teknologi PETRONAS, Malaysia

PEC-DSC Tandem Solar H₂ Production

What is it?

 The DSC-PEC (Dye Solar Cell -Photoelectrochemical) tandem system is a hybrid setup where a DSC is combined with a PEC cell, working together to produce hydrogen using solar energy.

How it works:

- **DSC** generates electricity by converting light into electrical energy using dye molecules.
- **PEC** uses that electricity to split water into hydrogen and oxygen, leveraging sunlight for both power generation and the electrochemical reaction.

Why a tandem system?

• Tandem systems combine two types of energy conversion, improving overall efficiency, especially in suboptimal light conditions like indoor environments.

• Indoor light is ubiquitous:

Natural and artificial indoor light sources are abundant but underutilized. By tapping into indoor light, you create an untapped market for hydrogen production systems that can be integrated into homes, offices, and commercial spaces.

• Energy efficiency:

Utilizing indoor light can contribute to energy efficiency in smart buildings, making use of light that would otherwise be wasted.

• Low-intensity light efficiency: Traditional PV cells underperform in diffuse, low-intensity indoor light. DSC and PEC can be tailored to these conditions, improving efficiency in real-world applications where natural sunlight is scarce.

The Challenges: Photovoltaic

• Efficiency under indoor light:

Most conventional PV cells (like silicon) are optimized for direct sunlight, not diffuse indoor light. Indoor lighting often lacks the full spectrum of sunlight, particularly in the UV and IR regions

• Cost and scalability:

High-cost materials like silicon also make it difficult to create a cost-effective solution for smaller-scale indoor installations.

Characteristics of indoor lighting conditions. a) Normalized spectra of the CIE 1931 standard human eye response (green), and of warm white light-emitting diode (LED, orange), cool white LED (cyan), compact fluorescent light (CFL, violet) and incandescent (red) commercial lamps measured with an ILT950 spectroradiometer.

Elsevier, 2017, Pages 147-186, ISBN 9781785481499 https://doi.org/10.1016/B978-1-78548-149-9.50004-3

Spectrum of sunlight

Material stability and light absorption:

• Photoanodes need to be stable in water and have a wide absorption range, but many materials degrade under operational conditions or fail to perform well under weak indoor light.

Bandgap and band edge positions of various semiconductors with respect to the vacuum level and normal hydrogen electrode (NHE)

Int. J. of Hydrogen Energy, 65, pp.779-803 https://doi.org/10.1016/j.ijhydene.2024.03.378

- Not only the bandgap energy should be in the range of **1.8–2.2 eV** (corresponds to wavelengths of approximately 560 to 700 nm), but the band edges should best fit the water redox potentials.
- No material met ideal bandgap and resistance to corrosion

DSC as Potential Indoor PV

Reported performance as a function of the band gap for several PV technologies measured under artificial indoor light between 50 and 3,000 lx

Materials	Efficiency (%)	Measurement conditions	Reference		
a-Si:H	21%	1000 lux white LED	Renewable Energy, 36(2), pp. 642-647, 2011		
DSSC: XY1b + Y123 dye	32%	1000 lux warm white, fluorescent tube	Joule, Volume 2, pp. 1108-1117, 2018		
III-V: Alo.2Gao.8As	21%	580 lux white LED	IEEE Transactions on Electron Devices, 62(7), pp. 2170-2175, 2015		
III-V: GaAs	19%	580 lux white LED	IEEE Trans Electron Devices, 63(7), pp. 2820-2825, 2017		
OPV: BTR	28%	1000 lux fluorescent lamp	Journal of Materials Chemistry A, 6(14), pp. 5618-5626, 2018		
Perovskite: CsPbl2Br	34%	200 lux indoor illumination	Advanced Functional Materials, 31(42), 2021		

DSC as Potential Indoor PV

Fig. 1: TEM images of synthesized nanoparticles TiO_2 at magnification of (a) 88 kX, (b) 530 kX

Fig. 2: The (a) and (b) FESEM images of synthesized SiO_2 sphere, and SiO_2 coated with TiO_2 , (e) EELS dot mapping and (d) EDX line scan of single SiO_2 - TiO_2 core shell sphere

Nanomaterials 12 (18), 3128 https://doi.org/10.3390/nano12183128

Optimizing Photoelectrode DSC

- Highest I_{sc} due to:
 - presence of large surface area (3X bigger than commercial)
 - Effective light scattering by the micron-size STCS thus extend travel distance of light [4, 45]
 - Multiple light refraction of the incidence light passing through the structure of different refractive index [46]
- High value of R_{br}/R_t
 - Ease the electron movement within photoelectrode network
 - Reduce rate of recombination (1/3 compared to Dyesol and 1/2 compared to commercial sample)
 - Leads to longer electron lifetime

Fig. 4: UV-Vis of desorbed dye solution

Fig. 5: IPCE analysis of fabricated DSC

Table 1: Electrochemical and photovoltaic properties of optimized, commercial and Dyesol sample

										-		
Sample	R _t (Ω)	R _{br} (Ω)	R _{br} /R _t	С _µ (F)	τ _n (s)	k (s⁻¹)	D _n (cm²s⁻¹)	n _s (cm⁻³)	l _{sc} (mA)	V _{oc} (V)	FF	η (%)
Optimized sample	1.20	39.93	33.3	5.39x10 ⁻³	0.215	4.650	1.55x10 ⁻⁶	10.80x10 ¹⁷	15.399	0.747	0.605	6.964
Commercial TiO ₂	3.66	93.80	25.6	1.10x10 ⁻³	0.103	9.718	2.49x10 ⁻⁶	1.53x10 ¹⁷	10.080	0.793	0.634	5.065
Dyesol paste	4.78	35.25	7.4	2.34x10 ⁻³	0.082	12.133	0.89x10 ⁻⁶	3.26x10 ¹⁷	13.782	0.753	0.651	6.753

DSC as Potential Indoor PV

•

•

Quantum Dots as Potential Photoanodes

Multicolour luminescence of CQDs

- QD nanomaterials (2–10 nm in lateral size) show good electrocatalytic properties, such as C/GQDs (carbon and graphene quantum dots), BPQDs (black phosphorus quantum dots), MXQDs (MXenes quantum dots)
- Tunable absorption spectrum, large specific surface area, fast electron transfer rate, and abundant surface functional groups can improve the electrocatalytic performance of the composites
- Variety of synthesis methods also make the quantum dot-based electrocatalytic materials easily available

Fig. (a) PL emission spectra of samples 165, 210, and 300 s and (b) PL emission spectra of samples@300 s at different excitation wavelengths.

Mat. Sci. in Semiconductor Processing, 181, 2024, 108661 https://doi.org/10.1016/j.mssp.2024.108661

Quantum Dots as Potential Photoanodes

Development of GQD@TiO₂ (011) rutile Photoanode

- A green approach was undertaken to synthesize GQD through the hydrolysis of corn powder.
- Photoanodes synthesized via hydrothermal method exhibit vertically aligned TiO2 NRs with an average diameter of 141.7 and 233.4 nm for TiO₂ and GQD@TiO₂, respectively
- The UV–vis absorption the GQD had a prominent transition absorption peak near the 300 nm wavelength range, thus reduce the E_g and amplified absorption curve of GQD@TiO₂ (011) rutile.

Appl Surface Sci., vol. 576, Part B, 2022, 151871 https://doi.org/10.1016/j.apsusc.2021.151871

Fig. 6: FESEM image of (a) top-view GQDs on FTO substrate, (b and c) top-view and cross-sectional (inset) TiO_2 , and $GQD@TiO_2$ composite, respectively.

Fig. 8: (a) and (b) Nyquist, (c) Mott-Schottky, (d) photocurrent density, and (e) hydrogen production plots under visible light irradiation for TiO_2 and GQD@TiO_2 rutile.

Quantum Dots as Potential Photoanodes

• The hydrogen production rate over GQD@TiO₂ rutile (011) photoanode was 31063 μ mol g⁻¹ h⁻¹, nearly five times more efficient than the pristine TiO₂ rutile (011).

Photocatalysts	Experimental condition	Light source/Reaction system	hydrogen production (µmol/h ⁻¹ g ⁻¹)	Reference
GQD@TiO ₂	TiO ₂ catalyst and a certain amount of GQDs were suspended in 20% (v/v) methanol solution	UV–Vis light/ batch	206.3	Superlattices Microstruct., 94 (2016), pp. 237-244
GQD@P-25(Commercial TiO ₂)	a mixture of 5 vol% glycerol aqueous and	Direct sunlight/batch	29,548	Ind. Eng. Chem. Res., 59 (2020), pp. 13060-13068
GQD@TiO ₂	The photocatalyst was dispersed in of 10% (v/v) ethanol solution	250 W high-pressure mercury lamp/ batch	8690	Appl. Surf. Sci., 396 (2017), pp. 1375-1382
GQD@TiO ₂ (011) rutile	The fabricated thin film was immersed 5% in glycerol/KOH	500 W halogen lamp/PEC cell	31,063	This work

Table 4. Comparison of the photocatalytic hydrogen production results of GQD@TiO₂ (011) rutile with the other similar photocatalytic systems

Appl Surface Sci., vol. 576, Part B, 2022, 151871 https://doi.org/10.1016/j.apsusc.2021.151871

DSC-PEC Tandem Cell

- Develop a new, highly efficient process of water splitting into hydrogen that combines a stable nanostructured bimetallic photocatalyst in Photo-Electrochemical Cell (PEC) with a highly efficient Dye Solar Cell (DSC), connected in series in a standalone solar panel.
- This developed standalone solar panel has potential for inexpensive large-scale production where the deployment can be double solar panels as glass walls of the building

- The green H₂ market was valued at USD 1.1 billion in 2023 and is projected to reach USD 30.6 billion by 2030, growing at 61.1% CAGR from 2023 to 2024.
- The green H₂ market is experiencing rapid growth, driven by global effort to reduce carbon emissions and advancements in electrolysis and renewables.
- The demand for decentralized, renewable energy solutions is growing.
- With the increasing shift towards green hydrogen, the DSC-PEC tandem system could address both residential and industrial needs, opening a multibillion-dollar market in the near future.
- Indoor H₂ production systems could be seamlessly integrated into building architecture, such as windows or walls, producing clean hydrogen for energy use or storage.
- Challenges: Cost reduction and efficiency improvement are key challenges that need to be addressed to make green H₂ economically competitive with conventional H₂ production methods

The forecasted global H_2 production by color from 2022 to 2050. Information adapted from

Centre of Innovative Nanostructures & Nanodevices (COINN) Green H₂ Research Team

Dr Mohamed Shuaib Mohamed Saheed (Centre Head)

Prof. Dr Norani Muti Mohamed

Assoc. Prof. Dr Chong Fai Kait

Assoc. Prof. Dr Suriati Sufian

Dr Hayyiratul Fatimah Mohd Zaid

Dr Muhammad Umair Shahid

Dr Robabeh Bashiri

Dr Farman Ullah

Mr Mehboob Khatani

Ms Kamilah Ramly

Ms Nur Ain Atiqah Mohd Amin

Thank You

© 2024 INSTITUTE OF TECHNOLOGY PETRONAS SDN BHD All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.